Loading…
Utilizing chaos game representation for enhanced classification of SARS-CoV-2 variants with stacked sparse autoencoders
Since the beginning of the COVID-19 pandemic, the World Health Organization (WHO) has been tracking SARS-CoV-2 mutations. The SARS-CoV-2 consistently mutated throughout the pandemic, which resulted in many variants. A variant is a viral genome containing one or more genetic code mutations. Deep lear...
Saved in:
Published in: | Neural computing & applications 2024-11, Vol.36 (31), p.19823-19837 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c115z-4978c30c89695349033fb33a4c1431600f0c176b4e08dbaef06ab049a1521bfc3 |
container_end_page | 19837 |
container_issue | 31 |
container_start_page | 19823 |
container_title | Neural computing & applications |
container_volume | 36 |
creator | Coutinho, Maria G. F. Câmara, Gabriel B. M. Barbosa, Raquel de M. Fernandes, Marcelo A. C. |
description | Since the beginning of the COVID-19 pandemic, the World Health Organization (WHO) has been tracking SARS-CoV-2 mutations. The SARS-CoV-2 consistently mutated throughout the pandemic, which resulted in many variants. A variant is a viral genome containing one or more genetic code mutations. Deep learning techniques have been successfully used in many viral classification problems associated with viral infection diagnosis, metagenomics, phylogenetics, and analysis. This work proposed an effective viral genome classifier for SARS-CoV-2 variants using the deep neural network based on the stacked sparse autoencoder (SSAE). Aiming to achieve the best performance of the model, we explored the utilization of image representations of the complete genome sequences as the SSAE input. The dataset based on Chaos Game Representation (CGR) images was generated and applied to the experiments of classification of SARS-CoV-2 variants of concern (VOC). The SSAE technique provided great performance results, achieving classification accuracy of 99.9% for the validation set and 99.8% for the test set. Finally, the results indicated the relevance of using this deep learning technique in genome classification problems. |
doi_str_mv | 10.1007/s00521-024-10278-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110546859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110546859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c115z-4978c30c89695349033fb33a4c1431600f0c176b4e08dbaef06ab049a1521bfc3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKeA5-hkk93uHkvxCwTBWq8hmyZtapvUzNZif73RFbx5msO8zzvMQ8gFhysOMLxGgLLgDArJOBTDmu0PyIBLIZiAsj4kA2hkXldSHJMTxCUAyKouB2Q37fzK732YU7PQEelcry1NdpMs2tDpzsdAXUzUhoUOxs6oWWlE77zpd9HRyeh5wsbxlRX0QyevQ4d057sFxU6bt4zgRie0VG-7aIOJM5vwjBw5vUJ7_jtPyfT25mV8zx6f7h7Go0dmOC_3TDbD2ggwdVM1pZANCOFaIbQ0-TleATgwfFi10kI9a7V1UOkWZKN51tE6I07JZd-7SfF9a7FTy7hNIZ9UgnMovy00OVX0KZMiYrJObZJf6_SpOKhvwaoXrLJg9SNY7TMkeghzOMxt-qv-h_oC0KJ_oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110546859</pqid></control><display><type>article</type><title>Utilizing chaos game representation for enhanced classification of SARS-CoV-2 variants with stacked sparse autoencoders</title><source>Springer Nature</source><creator>Coutinho, Maria G. F. ; Câmara, Gabriel B. M. ; Barbosa, Raquel de M. ; Fernandes, Marcelo A. C.</creator><creatorcontrib>Coutinho, Maria G. F. ; Câmara, Gabriel B. M. ; Barbosa, Raquel de M. ; Fernandes, Marcelo A. C.</creatorcontrib><description>Since the beginning of the COVID-19 pandemic, the World Health Organization (WHO) has been tracking SARS-CoV-2 mutations. The SARS-CoV-2 consistently mutated throughout the pandemic, which resulted in many variants. A variant is a viral genome containing one or more genetic code mutations. Deep learning techniques have been successfully used in many viral classification problems associated with viral infection diagnosis, metagenomics, phylogenetics, and analysis. This work proposed an effective viral genome classifier for SARS-CoV-2 variants using the deep neural network based on the stacked sparse autoencoder (SSAE). Aiming to achieve the best performance of the model, we explored the utilization of image representations of the complete genome sequences as the SSAE input. The dataset based on Chaos Game Representation (CGR) images was generated and applied to the experiments of classification of SARS-CoV-2 variants of concern (VOC). The SSAE technique provided great performance results, achieving classification accuracy of 99.9% for the validation set and 99.8% for the test set. Finally, the results indicated the relevance of using this deep learning technique in genome classification problems.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-024-10278-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Deep learning ; Gene sequencing ; Genetic code ; Genomes ; Image Processing and Computer Vision ; Machine learning ; Mutation ; Original Article ; Pandemics ; Probability and Statistics in Computer Science ; Representations ; Severe acute respiratory syndrome coronavirus 2 ; Viral diseases</subject><ispartof>Neural computing & applications, 2024-11, Vol.36 (31), p.19823-19837</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c115z-4978c30c89695349033fb33a4c1431600f0c176b4e08dbaef06ab049a1521bfc3</cites><orcidid>0000-0001-7536-2506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Coutinho, Maria G. F.</creatorcontrib><creatorcontrib>Câmara, Gabriel B. M.</creatorcontrib><creatorcontrib>Barbosa, Raquel de M.</creatorcontrib><creatorcontrib>Fernandes, Marcelo A. C.</creatorcontrib><title>Utilizing chaos game representation for enhanced classification of SARS-CoV-2 variants with stacked sparse autoencoders</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Since the beginning of the COVID-19 pandemic, the World Health Organization (WHO) has been tracking SARS-CoV-2 mutations. The SARS-CoV-2 consistently mutated throughout the pandemic, which resulted in many variants. A variant is a viral genome containing one or more genetic code mutations. Deep learning techniques have been successfully used in many viral classification problems associated with viral infection diagnosis, metagenomics, phylogenetics, and analysis. This work proposed an effective viral genome classifier for SARS-CoV-2 variants using the deep neural network based on the stacked sparse autoencoder (SSAE). Aiming to achieve the best performance of the model, we explored the utilization of image representations of the complete genome sequences as the SSAE input. The dataset based on Chaos Game Representation (CGR) images was generated and applied to the experiments of classification of SARS-CoV-2 variants of concern (VOC). The SSAE technique provided great performance results, achieving classification accuracy of 99.9% for the validation set and 99.8% for the test set. Finally, the results indicated the relevance of using this deep learning technique in genome classification problems.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deep learning</subject><subject>Gene sequencing</subject><subject>Genetic code</subject><subject>Genomes</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Mutation</subject><subject>Original Article</subject><subject>Pandemics</subject><subject>Probability and Statistics in Computer Science</subject><subject>Representations</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Viral diseases</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKeA5-hkk93uHkvxCwTBWq8hmyZtapvUzNZif73RFbx5msO8zzvMQ8gFhysOMLxGgLLgDArJOBTDmu0PyIBLIZiAsj4kA2hkXldSHJMTxCUAyKouB2Q37fzK732YU7PQEelcry1NdpMs2tDpzsdAXUzUhoUOxs6oWWlE77zpd9HRyeh5wsbxlRX0QyevQ4d057sFxU6bt4zgRie0VG-7aIOJM5vwjBw5vUJ7_jtPyfT25mV8zx6f7h7Go0dmOC_3TDbD2ggwdVM1pZANCOFaIbQ0-TleATgwfFi10kI9a7V1UOkWZKN51tE6I07JZd-7SfF9a7FTy7hNIZ9UgnMovy00OVX0KZMiYrJObZJf6_SpOKhvwaoXrLJg9SNY7TMkeghzOMxt-qv-h_oC0KJ_oQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Coutinho, Maria G. F.</creator><creator>Câmara, Gabriel B. M.</creator><creator>Barbosa, Raquel de M.</creator><creator>Fernandes, Marcelo A. C.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7536-2506</orcidid></search><sort><creationdate>20241101</creationdate><title>Utilizing chaos game representation for enhanced classification of SARS-CoV-2 variants with stacked sparse autoencoders</title><author>Coutinho, Maria G. F. ; Câmara, Gabriel B. M. ; Barbosa, Raquel de M. ; Fernandes, Marcelo A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c115z-4978c30c89695349033fb33a4c1431600f0c176b4e08dbaef06ab049a1521bfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deep learning</topic><topic>Gene sequencing</topic><topic>Genetic code</topic><topic>Genomes</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Mutation</topic><topic>Original Article</topic><topic>Pandemics</topic><topic>Probability and Statistics in Computer Science</topic><topic>Representations</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coutinho, Maria G. F.</creatorcontrib><creatorcontrib>Câmara, Gabriel B. M.</creatorcontrib><creatorcontrib>Barbosa, Raquel de M.</creatorcontrib><creatorcontrib>Fernandes, Marcelo A. C.</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coutinho, Maria G. F.</au><au>Câmara, Gabriel B. M.</au><au>Barbosa, Raquel de M.</au><au>Fernandes, Marcelo A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing chaos game representation for enhanced classification of SARS-CoV-2 variants with stacked sparse autoencoders</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>36</volume><issue>31</issue><spage>19823</spage><epage>19837</epage><pages>19823-19837</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Since the beginning of the COVID-19 pandemic, the World Health Organization (WHO) has been tracking SARS-CoV-2 mutations. The SARS-CoV-2 consistently mutated throughout the pandemic, which resulted in many variants. A variant is a viral genome containing one or more genetic code mutations. Deep learning techniques have been successfully used in many viral classification problems associated with viral infection diagnosis, metagenomics, phylogenetics, and analysis. This work proposed an effective viral genome classifier for SARS-CoV-2 variants using the deep neural network based on the stacked sparse autoencoder (SSAE). Aiming to achieve the best performance of the model, we explored the utilization of image representations of the complete genome sequences as the SSAE input. The dataset based on Chaos Game Representation (CGR) images was generated and applied to the experiments of classification of SARS-CoV-2 variants of concern (VOC). The SSAE technique provided great performance results, achieving classification accuracy of 99.9% for the validation set and 99.8% for the test set. Finally, the results indicated the relevance of using this deep learning technique in genome classification problems.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-024-10278-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7536-2506</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2024-11, Vol.36 (31), p.19823-19837 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_3110546859 |
source | Springer Nature |
subjects | Artificial Intelligence Artificial neural networks Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Deep learning Gene sequencing Genetic code Genomes Image Processing and Computer Vision Machine learning Mutation Original Article Pandemics Probability and Statistics in Computer Science Representations Severe acute respiratory syndrome coronavirus 2 Viral diseases |
title | Utilizing chaos game representation for enhanced classification of SARS-CoV-2 variants with stacked sparse autoencoders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20chaos%20game%20representation%20for%20enhanced%20classification%20of%20SARS-CoV-2%20variants%20with%20stacked%20sparse%20autoencoders&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Coutinho,%20Maria%20G.%20F.&rft.date=2024-11-01&rft.volume=36&rft.issue=31&rft.spage=19823&rft.epage=19837&rft.pages=19823-19837&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-024-10278-z&rft_dat=%3Cproquest_cross%3E3110546859%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c115z-4978c30c89695349033fb33a4c1431600f0c176b4e08dbaef06ab049a1521bfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110546859&rft_id=info:pmid/&rfr_iscdi=true |