Loading…

A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)

We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space a...

Full description

Saved in:
Bibliographic Details
Published in:Algebras and representation theory 2024-10, Vol.27 (5), p.1957-1979
Main Author: Marko, František
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-4eb7a3afcfb78ee62c5b65495fbfcff55883274ed7927037eded055702624d6f3
container_end_page 1979
container_issue 5
container_start_page 1957
container_title Algebras and representation theory
container_volume 27
creator Marko, František
description We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space and mixed tensor space, respectively, over the group algebra of the symmetric group and the Brauer wall algebra, respectively. Our main new results are the second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over an infinite ground field of positive characteristic.
doi_str_mv 10.1007/s10468-024-10290-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110716376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110716376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-4eb7a3afcfb78ee62c5b65495fbfcff55883274ed7927037eded055702624d6f3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4Crgxi6iJ_fJstRahaILFd2FuSTa0s7UZIZS8OGNHcGdq_Nz-C_wIXRO4YoC6OtIQaiMABOEAjNAtgdoQKVmxIA2h0nzTBHD-NsxOolxCQBGZXSAxBg_NK3DTY2fyo8ukFe3W-GbLl8t2oWL2DcBz-aX6xHO62qvvurRKTry-Sq6s987RC-30-fJHZk_zu4n4zkpGUBLhCt0znNf-kJnzilWykJJYaQv0s9LmWWcaeEqbZgGrl3lKpBSA1NMVMrzIbroezeh-excbO2y6UKdJi2nFDRVXKvkYr2rDE2MwXm7CYt1HnaWgv2hY3s6NtGxezp2m0K8D8Vkrt9d-Kv-J_UNReZlZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110716376</pqid></control><display><type>article</type><title>A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)</title><source>Springer Nature</source><creator>Marko, František</creator><creatorcontrib>Marko, František</creatorcontrib><description>We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space and mixed tensor space, respectively, over the group algebra of the symmetric group and the Brauer wall algebra, respectively. Our main new results are the second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over an infinite ground field of positive characteristic.</description><identifier>ISSN: 1386-923X</identifier><identifier>EISSN: 1572-9079</identifier><identifier>DOI: 10.1007/s10468-024-10290-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Associative Rings and Algebras ; Commutative Rings and Algebras ; Fields (mathematics) ; Group theory ; Mathematics ; Mathematics and Statistics ; Non-associative Rings and Algebras ; Tensors</subject><ispartof>Algebras and representation theory, 2024-10, Vol.27 (5), p.1957-1979</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-4eb7a3afcfb78ee62c5b65495fbfcff55883274ed7927037eded055702624d6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marko, František</creatorcontrib><title>A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)</title><title>Algebras and representation theory</title><addtitle>Algebr Represent Theor</addtitle><description>We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space and mixed tensor space, respectively, over the group algebra of the symmetric group and the Brauer wall algebra, respectively. Our main new results are the second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over an infinite ground field of positive characteristic.</description><subject>Algebra</subject><subject>Associative Rings and Algebras</subject><subject>Commutative Rings and Algebras</subject><subject>Fields (mathematics)</subject><subject>Group theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Non-associative Rings and Algebras</subject><subject>Tensors</subject><issn>1386-923X</issn><issn>1572-9079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4Crgxi6iJ_fJstRahaILFd2FuSTa0s7UZIZS8OGNHcGdq_Nz-C_wIXRO4YoC6OtIQaiMABOEAjNAtgdoQKVmxIA2h0nzTBHD-NsxOolxCQBGZXSAxBg_NK3DTY2fyo8ukFe3W-GbLl8t2oWL2DcBz-aX6xHO62qvvurRKTry-Sq6s987RC-30-fJHZk_zu4n4zkpGUBLhCt0znNf-kJnzilWykJJYaQv0s9LmWWcaeEqbZgGrl3lKpBSA1NMVMrzIbroezeh-excbO2y6UKdJi2nFDRVXKvkYr2rDE2MwXm7CYt1HnaWgv2hY3s6NtGxezp2m0K8D8Vkrt9d-Kv-J_UNReZlZA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Marko, František</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)</title><author>Marko, František</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-4eb7a3afcfb78ee62c5b65495fbfcff55883274ed7927037eded055702624d6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Associative Rings and Algebras</topic><topic>Commutative Rings and Algebras</topic><topic>Fields (mathematics)</topic><topic>Group theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Non-associative Rings and Algebras</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marko, František</creatorcontrib><collection>CrossRef</collection><jtitle>Algebras and representation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marko, František</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)</atitle><jtitle>Algebras and representation theory</jtitle><stitle>Algebr Represent Theor</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>27</volume><issue>5</issue><spage>1957</spage><epage>1979</epage><pages>1957-1979</pages><issn>1386-923X</issn><eissn>1572-9079</eissn><abstract>We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space and mixed tensor space, respectively, over the group algebra of the symmetric group and the Brauer wall algebra, respectively. Our main new results are the second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over an infinite ground field of positive characteristic.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10468-024-10290-w</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-923X
ispartof Algebras and representation theory, 2024-10, Vol.27 (5), p.1957-1979
issn 1386-923X
1572-9079
language eng
recordid cdi_proquest_journals_3110716376
source Springer Nature
subjects Algebra
Associative Rings and Algebras
Commutative Rings and Algebras
Fields (mathematics)
Group theory
Mathematics
Mathematics and Statistics
Non-associative Rings and Algebras
Tensors
title A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20Schur-Weyl%20Dualities%20for%20GL(m)%20and%20GL(m%7Cn)&rft.jtitle=Algebras%20and%20representation%20theory&rft.au=Marko,%20Franti%C5%A1ek&rft.date=2024-10-01&rft.volume=27&rft.issue=5&rft.spage=1957&rft.epage=1979&rft.pages=1957-1979&rft.issn=1386-923X&rft.eissn=1572-9079&rft_id=info:doi/10.1007/s10468-024-10290-w&rft_dat=%3Cproquest_cross%3E3110716376%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-4eb7a3afcfb78ee62c5b65495fbfcff55883274ed7927037eded055702624d6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110716376&rft_id=info:pmid/&rfr_iscdi=true