Loading…
A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)
We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space a...
Saved in:
Published in: | Algebras and representation theory 2024-10, Vol.27 (5), p.1957-1979 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-4eb7a3afcfb78ee62c5b65495fbfcff55883274ed7927037eded055702624d6f3 |
container_end_page | 1979 |
container_issue | 5 |
container_start_page | 1957 |
container_title | Algebras and representation theory |
container_volume | 27 |
creator | Marko, František |
description | We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space and mixed tensor space, respectively, over the group algebra of the symmetric group and the Brauer wall algebra, respectively. Our main new results are the second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over an infinite ground field of positive characteristic. |
doi_str_mv | 10.1007/s10468-024-10290-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110716376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110716376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-4eb7a3afcfb78ee62c5b65495fbfcff55883274ed7927037eded055702624d6f3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4Crgxi6iJ_fJstRahaILFd2FuSTa0s7UZIZS8OGNHcGdq_Nz-C_wIXRO4YoC6OtIQaiMABOEAjNAtgdoQKVmxIA2h0nzTBHD-NsxOolxCQBGZXSAxBg_NK3DTY2fyo8ukFe3W-GbLl8t2oWL2DcBz-aX6xHO62qvvurRKTry-Sq6s987RC-30-fJHZk_zu4n4zkpGUBLhCt0znNf-kJnzilWykJJYaQv0s9LmWWcaeEqbZgGrl3lKpBSA1NMVMrzIbroezeh-excbO2y6UKdJi2nFDRVXKvkYr2rDE2MwXm7CYt1HnaWgv2hY3s6NtGxezp2m0K8D8Vkrt9d-Kv-J_UNReZlZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110716376</pqid></control><display><type>article</type><title>A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)</title><source>Springer Nature</source><creator>Marko, František</creator><creatorcontrib>Marko, František</creatorcontrib><description>We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space and mixed tensor space, respectively, over the group algebra of the symmetric group and the Brauer wall algebra, respectively. Our main new results are the second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over an infinite ground field of positive characteristic.</description><identifier>ISSN: 1386-923X</identifier><identifier>EISSN: 1572-9079</identifier><identifier>DOI: 10.1007/s10468-024-10290-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Associative Rings and Algebras ; Commutative Rings and Algebras ; Fields (mathematics) ; Group theory ; Mathematics ; Mathematics and Statistics ; Non-associative Rings and Algebras ; Tensors</subject><ispartof>Algebras and representation theory, 2024-10, Vol.27 (5), p.1957-1979</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-4eb7a3afcfb78ee62c5b65495fbfcff55883274ed7927037eded055702624d6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marko, František</creatorcontrib><title>A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)</title><title>Algebras and representation theory</title><addtitle>Algebr Represent Theor</addtitle><description>We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space and mixed tensor space, respectively, over the group algebra of the symmetric group and the Brauer wall algebra, respectively. Our main new results are the second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over an infinite ground field of positive characteristic.</description><subject>Algebra</subject><subject>Associative Rings and Algebras</subject><subject>Commutative Rings and Algebras</subject><subject>Fields (mathematics)</subject><subject>Group theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Non-associative Rings and Algebras</subject><subject>Tensors</subject><issn>1386-923X</issn><issn>1572-9079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4Crgxi6iJ_fJstRahaILFd2FuSTa0s7UZIZS8OGNHcGdq_Nz-C_wIXRO4YoC6OtIQaiMABOEAjNAtgdoQKVmxIA2h0nzTBHD-NsxOolxCQBGZXSAxBg_NK3DTY2fyo8ukFe3W-GbLl8t2oWL2DcBz-aX6xHO62qvvurRKTry-Sq6s987RC-30-fJHZk_zu4n4zkpGUBLhCt0znNf-kJnzilWykJJYaQv0s9LmWWcaeEqbZgGrl3lKpBSA1NMVMrzIbroezeh-excbO2y6UKdJi2nFDRVXKvkYr2rDE2MwXm7CYt1HnaWgv2hY3s6NtGxezp2m0K8D8Vkrt9d-Kv-J_UNReZlZA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Marko, František</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)</title><author>Marko, František</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-4eb7a3afcfb78ee62c5b65495fbfcff55883274ed7927037eded055702624d6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Associative Rings and Algebras</topic><topic>Commutative Rings and Algebras</topic><topic>Fields (mathematics)</topic><topic>Group theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Non-associative Rings and Algebras</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marko, František</creatorcontrib><collection>CrossRef</collection><jtitle>Algebras and representation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marko, František</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)</atitle><jtitle>Algebras and representation theory</jtitle><stitle>Algebr Represent Theor</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>27</volume><issue>5</issue><spage>1957</spage><epage>1979</epage><pages>1957-1979</pages><issn>1386-923X</issn><eissn>1572-9079</eissn><abstract>We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space and mixed tensor space, respectively, over the group algebra of the symmetric group and the Brauer wall algebra, respectively. Our main new results are the second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over an infinite ground field of positive characteristic.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10468-024-10290-w</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-923X |
ispartof | Algebras and representation theory, 2024-10, Vol.27 (5), p.1957-1979 |
issn | 1386-923X 1572-9079 |
language | eng |
recordid | cdi_proquest_journals_3110716376 |
source | Springer Nature |
subjects | Algebra Associative Rings and Algebras Commutative Rings and Algebras Fields (mathematics) Group theory Mathematics Mathematics and Statistics Non-associative Rings and Algebras Tensors |
title | A Note on Schur-Weyl Dualities for GL(m) and GL(m|n) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20Schur-Weyl%20Dualities%20for%20GL(m)%20and%20GL(m%7Cn)&rft.jtitle=Algebras%20and%20representation%20theory&rft.au=Marko,%20Franti%C5%A1ek&rft.date=2024-10-01&rft.volume=27&rft.issue=5&rft.spage=1957&rft.epage=1979&rft.pages=1957-1979&rft.issn=1386-923X&rft.eissn=1572-9079&rft_id=info:doi/10.1007/s10468-024-10290-w&rft_dat=%3Cproquest_cross%3E3110716376%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-4eb7a3afcfb78ee62c5b65495fbfcff55883274ed7927037eded055702624d6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110716376&rft_id=info:pmid/&rfr_iscdi=true |