Loading…
Molecular Design and Organic Photovoltaic Applications of Carboxylate‐Functionalized P‐type Polymers
The significant progress of p‐type and n‐type active layer materials in the past several years has pushed the power conversion efficiency (PCE) of organic solar cells (OSCs) toward 19%. Due to the relatively low synthesis cost and simple synthesis method of carboxylate‐containing building blocks, in...
Saved in:
Published in: | Advanced functional materials 2024-09, Vol.34 (38), p.n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2724-15e5588e7f5dff6b00b7d759490965cc95a25237b6de7652d18f231ffc4d37c23 |
container_end_page | n/a |
container_issue | 38 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Du, Mengzhen Li, Xianda Mu, Chenyu Zhou, Bingjie Cong, Peiqing Liu, Hongxing Tang, Ailing Liu, Yingliang Zhou, Erjun |
description | The significant progress of p‐type and n‐type active layer materials in the past several years has pushed the power conversion efficiency (PCE) of organic solar cells (OSCs) toward 19%. Due to the relatively low synthesis cost and simple synthesis method of carboxylate‐containing building blocks, including thiophene, thieno[3,2‐b]thiophene, thieno[3,4‐b]thiophene, furan, pyrazine, benzodithiophene, benzothiazole, quinoxaline, etc., are widely used to construct p‐type photovoltaic polymers. These resulting carboxylate‐bearing polymers present downward energy levels, high absorption coefficient, narrow bandgap, high hole mobility, and strong aggregation behavior, which have dabbled in the fabrication of mechanically stretchable, semitransparent, indoor, and tandem OSCs, etc., and produce excellent photovoltaic performance. The low‐cost carboxylate‐containing copolymers exhibit a satisfying PCE approaching 17%, and the random terpolymer systems achieve a high PCE over 19%. This review focuses on the progress of carboxylate‐containing photovoltaic polymers, summarizes the molecular characteristics, discusses their structure‐performance relationship, and offers a summary and outlook on the challenges for future molecular development.
This review focuses on the progress of carboxylate‐containing photovoltaic polymers, summarizes the molecular characteristics, discusses their structure‐performance relationship, highlights their special device applications, and offers a summary and outlook on the challenges for future molecular development. |
doi_str_mv | 10.1002/adfm.202402974 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111192552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111192552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2724-15e5588e7f5dff6b00b7d759490965cc95a25237b6de7652d18f231ffc4d37c23</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqWwMltibrGdOE7GqqWA1KodQGKzHF_aVG4c7AQIE4_AM_IkJCqCkbOc2_8fHX0AXGI0xgiRa6HMfkwQiRHJWHwEBjjByShCJD3-rfHTKTgLYYcQZiyKB2C7dFbLxgoPZzoUmxKKUsGV34iykHC9dbV7cbYWXTOpKltIUReuDNAZOBU-d2-tFbX--vicN6XsV8IW71rBdTeq20rDtbPtXvtwDk6MsEFf_OQheJzfPEzvRovV7f10shhJwkg8wlRTmqaaGaqMSXKEcqYYzeIMZQmVMqOCUBKxPFGaJZQonBoSYWNkrCImSTQEV4e7lXfPjQ4137nGd28FHuEuMkJprxofVNK7ELw2vPLFXviWY8R7mrynyX9pdobsYHgtrG7_UfPJbL78834DNtV8EQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111192552</pqid></control><display><type>article</type><title>Molecular Design and Organic Photovoltaic Applications of Carboxylate‐Functionalized P‐type Polymers</title><source>Wiley</source><creator>Du, Mengzhen ; Li, Xianda ; Mu, Chenyu ; Zhou, Bingjie ; Cong, Peiqing ; Liu, Hongxing ; Tang, Ailing ; Liu, Yingliang ; Zhou, Erjun</creator><creatorcontrib>Du, Mengzhen ; Li, Xianda ; Mu, Chenyu ; Zhou, Bingjie ; Cong, Peiqing ; Liu, Hongxing ; Tang, Ailing ; Liu, Yingliang ; Zhou, Erjun</creatorcontrib><description>The significant progress of p‐type and n‐type active layer materials in the past several years has pushed the power conversion efficiency (PCE) of organic solar cells (OSCs) toward 19%. Due to the relatively low synthesis cost and simple synthesis method of carboxylate‐containing building blocks, including thiophene, thieno[3,2‐b]thiophene, thieno[3,4‐b]thiophene, furan, pyrazine, benzodithiophene, benzothiazole, quinoxaline, etc., are widely used to construct p‐type photovoltaic polymers. These resulting carboxylate‐bearing polymers present downward energy levels, high absorption coefficient, narrow bandgap, high hole mobility, and strong aggregation behavior, which have dabbled in the fabrication of mechanically stretchable, semitransparent, indoor, and tandem OSCs, etc., and produce excellent photovoltaic performance. The low‐cost carboxylate‐containing copolymers exhibit a satisfying PCE approaching 17%, and the random terpolymer systems achieve a high PCE over 19%. This review focuses on the progress of carboxylate‐containing photovoltaic polymers, summarizes the molecular characteristics, discusses their structure‐performance relationship, and offers a summary and outlook on the challenges for future molecular development.
This review focuses on the progress of carboxylate‐containing photovoltaic polymers, summarizes the molecular characteristics, discusses their structure‐performance relationship, highlights their special device applications, and offers a summary and outlook on the challenges for future molecular development.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202402974</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Absorptivity ; carboxylate‐containing polymers ; Copolymers ; Energy conversion efficiency ; Energy levels ; Hole mobility ; Molecular structure ; nonfullerene acceptors ; organic photovoltaics ; organic solar cells ; Photovoltaic cells ; Polymers ; Quinoxalines ; Solar cells ; Synthesis ; Terpolymers</subject><ispartof>Advanced functional materials, 2024-09, Vol.34 (38), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2724-15e5588e7f5dff6b00b7d759490965cc95a25237b6de7652d18f231ffc4d37c23</cites><orcidid>0000-0003-1182-311X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Du, Mengzhen</creatorcontrib><creatorcontrib>Li, Xianda</creatorcontrib><creatorcontrib>Mu, Chenyu</creatorcontrib><creatorcontrib>Zhou, Bingjie</creatorcontrib><creatorcontrib>Cong, Peiqing</creatorcontrib><creatorcontrib>Liu, Hongxing</creatorcontrib><creatorcontrib>Tang, Ailing</creatorcontrib><creatorcontrib>Liu, Yingliang</creatorcontrib><creatorcontrib>Zhou, Erjun</creatorcontrib><title>Molecular Design and Organic Photovoltaic Applications of Carboxylate‐Functionalized P‐type Polymers</title><title>Advanced functional materials</title><description>The significant progress of p‐type and n‐type active layer materials in the past several years has pushed the power conversion efficiency (PCE) of organic solar cells (OSCs) toward 19%. Due to the relatively low synthesis cost and simple synthesis method of carboxylate‐containing building blocks, including thiophene, thieno[3,2‐b]thiophene, thieno[3,4‐b]thiophene, furan, pyrazine, benzodithiophene, benzothiazole, quinoxaline, etc., are widely used to construct p‐type photovoltaic polymers. These resulting carboxylate‐bearing polymers present downward energy levels, high absorption coefficient, narrow bandgap, high hole mobility, and strong aggregation behavior, which have dabbled in the fabrication of mechanically stretchable, semitransparent, indoor, and tandem OSCs, etc., and produce excellent photovoltaic performance. The low‐cost carboxylate‐containing copolymers exhibit a satisfying PCE approaching 17%, and the random terpolymer systems achieve a high PCE over 19%. This review focuses on the progress of carboxylate‐containing photovoltaic polymers, summarizes the molecular characteristics, discusses their structure‐performance relationship, and offers a summary and outlook on the challenges for future molecular development.
This review focuses on the progress of carboxylate‐containing photovoltaic polymers, summarizes the molecular characteristics, discusses their structure‐performance relationship, highlights their special device applications, and offers a summary and outlook on the challenges for future molecular development.</description><subject>Absorptivity</subject><subject>carboxylate‐containing polymers</subject><subject>Copolymers</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>Hole mobility</subject><subject>Molecular structure</subject><subject>nonfullerene acceptors</subject><subject>organic photovoltaics</subject><subject>organic solar cells</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Quinoxalines</subject><subject>Solar cells</subject><subject>Synthesis</subject><subject>Terpolymers</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqWwMltibrGdOE7GqqWA1KodQGKzHF_aVG4c7AQIE4_AM_IkJCqCkbOc2_8fHX0AXGI0xgiRa6HMfkwQiRHJWHwEBjjByShCJD3-rfHTKTgLYYcQZiyKB2C7dFbLxgoPZzoUmxKKUsGV34iykHC9dbV7cbYWXTOpKltIUReuDNAZOBU-d2-tFbX--vicN6XsV8IW71rBdTeq20rDtbPtXvtwDk6MsEFf_OQheJzfPEzvRovV7f10shhJwkg8wlRTmqaaGaqMSXKEcqYYzeIMZQmVMqOCUBKxPFGaJZQonBoSYWNkrCImSTQEV4e7lXfPjQ4137nGd28FHuEuMkJprxofVNK7ELw2vPLFXviWY8R7mrynyX9pdobsYHgtrG7_UfPJbL78834DNtV8EQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Du, Mengzhen</creator><creator>Li, Xianda</creator><creator>Mu, Chenyu</creator><creator>Zhou, Bingjie</creator><creator>Cong, Peiqing</creator><creator>Liu, Hongxing</creator><creator>Tang, Ailing</creator><creator>Liu, Yingliang</creator><creator>Zhou, Erjun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1182-311X</orcidid></search><sort><creationdate>20240901</creationdate><title>Molecular Design and Organic Photovoltaic Applications of Carboxylate‐Functionalized P‐type Polymers</title><author>Du, Mengzhen ; Li, Xianda ; Mu, Chenyu ; Zhou, Bingjie ; Cong, Peiqing ; Liu, Hongxing ; Tang, Ailing ; Liu, Yingliang ; Zhou, Erjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2724-15e5588e7f5dff6b00b7d759490965cc95a25237b6de7652d18f231ffc4d37c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorptivity</topic><topic>carboxylate‐containing polymers</topic><topic>Copolymers</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>Hole mobility</topic><topic>Molecular structure</topic><topic>nonfullerene acceptors</topic><topic>organic photovoltaics</topic><topic>organic solar cells</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Quinoxalines</topic><topic>Solar cells</topic><topic>Synthesis</topic><topic>Terpolymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Mengzhen</creatorcontrib><creatorcontrib>Li, Xianda</creatorcontrib><creatorcontrib>Mu, Chenyu</creatorcontrib><creatorcontrib>Zhou, Bingjie</creatorcontrib><creatorcontrib>Cong, Peiqing</creatorcontrib><creatorcontrib>Liu, Hongxing</creatorcontrib><creatorcontrib>Tang, Ailing</creatorcontrib><creatorcontrib>Liu, Yingliang</creatorcontrib><creatorcontrib>Zhou, Erjun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Mengzhen</au><au>Li, Xianda</au><au>Mu, Chenyu</au><au>Zhou, Bingjie</au><au>Cong, Peiqing</au><au>Liu, Hongxing</au><au>Tang, Ailing</au><au>Liu, Yingliang</au><au>Zhou, Erjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Design and Organic Photovoltaic Applications of Carboxylate‐Functionalized P‐type Polymers</atitle><jtitle>Advanced functional materials</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>34</volume><issue>38</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The significant progress of p‐type and n‐type active layer materials in the past several years has pushed the power conversion efficiency (PCE) of organic solar cells (OSCs) toward 19%. Due to the relatively low synthesis cost and simple synthesis method of carboxylate‐containing building blocks, including thiophene, thieno[3,2‐b]thiophene, thieno[3,4‐b]thiophene, furan, pyrazine, benzodithiophene, benzothiazole, quinoxaline, etc., are widely used to construct p‐type photovoltaic polymers. These resulting carboxylate‐bearing polymers present downward energy levels, high absorption coefficient, narrow bandgap, high hole mobility, and strong aggregation behavior, which have dabbled in the fabrication of mechanically stretchable, semitransparent, indoor, and tandem OSCs, etc., and produce excellent photovoltaic performance. The low‐cost carboxylate‐containing copolymers exhibit a satisfying PCE approaching 17%, and the random terpolymer systems achieve a high PCE over 19%. This review focuses on the progress of carboxylate‐containing photovoltaic polymers, summarizes the molecular characteristics, discusses their structure‐performance relationship, and offers a summary and outlook on the challenges for future molecular development.
This review focuses on the progress of carboxylate‐containing photovoltaic polymers, summarizes the molecular characteristics, discusses their structure‐performance relationship, highlights their special device applications, and offers a summary and outlook on the challenges for future molecular development.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202402974</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0003-1182-311X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-09, Vol.34 (38), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3111192552 |
source | Wiley |
subjects | Absorptivity carboxylate‐containing polymers Copolymers Energy conversion efficiency Energy levels Hole mobility Molecular structure nonfullerene acceptors organic photovoltaics organic solar cells Photovoltaic cells Polymers Quinoxalines Solar cells Synthesis Terpolymers |
title | Molecular Design and Organic Photovoltaic Applications of Carboxylate‐Functionalized P‐type Polymers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Design%20and%20Organic%20Photovoltaic%20Applications%20of%20Carboxylate%E2%80%90Functionalized%20P%E2%80%90type%20Polymers&rft.jtitle=Advanced%20functional%20materials&rft.au=Du,%20Mengzhen&rft.date=2024-09-01&rft.volume=34&rft.issue=38&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202402974&rft_dat=%3Cproquest_cross%3E3111192552%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2724-15e5588e7f5dff6b00b7d759490965cc95a25237b6de7652d18f231ffc4d37c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3111192552&rft_id=info:pmid/&rfr_iscdi=true |