Loading…

Biphasic Nanoalloys‐Based Trifunctional Monolith for High‐Performance Flexible Zn‐Air Batteries and Self‐Driven Water Splitting

Sufficient integration of multiple active moieties and correlated heterostructure engineering are pivotal to optimize the reaction kinetics and the intrinsic activities of heterogeneous electrocatalysts. Herein, an integrated heterostructure of biphasic nanoalloys are constructed, encasing in in sit...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-09, Vol.34 (38), p.n/a
Main Authors: Yang, Xuhuan, Mao, Haoning, Zhou, Zining, Li, Keer, Li, Chen, Ye, Qiong, Liu, Boping, Fang, Yueping, Cai, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3173-1806cb751f99f2a6fd504b630349c0a3cef93c2a2913e7b03b0c98896f525b513
cites cdi_FETCH-LOGICAL-c3173-1806cb751f99f2a6fd504b630349c0a3cef93c2a2913e7b03b0c98896f525b513
container_end_page n/a
container_issue 38
container_start_page
container_title Advanced functional materials
container_volume 34
creator Yang, Xuhuan
Mao, Haoning
Zhou, Zining
Li, Keer
Li, Chen
Ye, Qiong
Liu, Boping
Fang, Yueping
Cai, Xin
description Sufficient integration of multiple active moieties and correlated heterostructure engineering are pivotal to optimize the reaction kinetics and the intrinsic activities of heterogeneous electrocatalysts. Herein, an integrated heterostructure of biphasic nanoalloys are constructed, encasing in in situ grown and interlaced nitrogen‐doped carbon nanoflake arrays (CoFe‐NiFe/NC). Well‐designed CoFe‐NiFe/NC owns more accessible active sites and interfacial conjugation effects, jointly accelerating the electron transfer and mass transport for multifunctional electrocatalysis. Such unconventional monolith delivers extraordinary trifunctional activities for hydrogen evolution reaction, oxygen evolution reaction (overpotential of 185 mV at 10 mA cm−2) and oxygen reduction reaction. The superior trifunctionality of CoFe‐NiFe/NC is rationalized with experimental and theoretical elucidation. Results reveal that the modulated electronic synergism between the Ni, Fe‐assisted Co sites and the adjacent N‐bridged carbon matrix decisively favors the appropriate binding of intermediates for promoted redox kinetics. Consequently, stand‐alone CoFe‐NiFe/NC cathode contributes to high‐performance aqueous/flexible zinc‐air batteries (ZABs), exhibiting high power/specific energy and excellent cycling stability. Remarkably, CoFe‐NiFe/NC‐based alkaline water electrolyzer requires merely 1.51 V to reach 10 mA cm−2, and a self‐driven water splitting system yields a high H2 evolution rate. This unique heterostructure monolith would open up opportunities for developing high‐efficiency multifunctional catalysts and advanced energy utilization devices. An integrated heterostructure monolith of biphasic nanoalloys encasing in interlaced N‐doped carbon nanoflake arrays is rationally constructed. Such unconventional catalyst delivers extraordinary hydrogen evolution reaction (HER)/oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) activities due to more accessible active sites and reinforced interfacial conjugation. The crafted multifunctional catalyst demonstrates superiority for high‐performance rechargeable/flexible Zn‐air batteries, water electrolyzer and self‐powered water splitting.
doi_str_mv 10.1002/adfm.202402933
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111192628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111192628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-1806cb751f99f2a6fd504b630349c0a3cef93c2a2913e7b03b0c98896f525b513</originalsourceid><addsrcrecordid>eNqFkEtPQjEQhW-MJiK6dd3ENdjHfXXJQ8QE1ASMxs1Nb28LJaXF9qKyc-fW3-gvsQSDS2czMznfmWROFJ0j2EYQ4ktWyWUbQxxDTAk5iBooRWmLQJwf7mf0dBydeL-AEGUZiRvRZ1et5swrDm6ZsUxru_HfH19d5kUFpk7JteG1soZpMLbGalXPgbQODNVsHrh74cK2ZIYLMNDiXZVagGcTlI5yoMvqWjglPGCmAhOhZRD6Tr0KAx5ZkMBkFS7WysxOoyPJtBdnv70ZPQyupr1ha3R3fdPrjFqcoIy0UA5TXmYJkpRKzFJZJTAuUwJJTDlkhAtJCccMU0REVkJSQk7znKYywUmZINKMLnZ3V86-rIWvi4Vdu_CeLwgKRXGK80C1dxR31nsnZLFyasncpkCw2IZdbMMu9mEHA90Z3pQWm3_ootMfjP-8Px1PiF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111192628</pqid></control><display><type>article</type><title>Biphasic Nanoalloys‐Based Trifunctional Monolith for High‐Performance Flexible Zn‐Air Batteries and Self‐Driven Water Splitting</title><source>Wiley</source><creator>Yang, Xuhuan ; Mao, Haoning ; Zhou, Zining ; Li, Keer ; Li, Chen ; Ye, Qiong ; Liu, Boping ; Fang, Yueping ; Cai, Xin</creator><creatorcontrib>Yang, Xuhuan ; Mao, Haoning ; Zhou, Zining ; Li, Keer ; Li, Chen ; Ye, Qiong ; Liu, Boping ; Fang, Yueping ; Cai, Xin</creatorcontrib><description>Sufficient integration of multiple active moieties and correlated heterostructure engineering are pivotal to optimize the reaction kinetics and the intrinsic activities of heterogeneous electrocatalysts. Herein, an integrated heterostructure of biphasic nanoalloys are constructed, encasing in in situ grown and interlaced nitrogen‐doped carbon nanoflake arrays (CoFe‐NiFe/NC). Well‐designed CoFe‐NiFe/NC owns more accessible active sites and interfacial conjugation effects, jointly accelerating the electron transfer and mass transport for multifunctional electrocatalysis. Such unconventional monolith delivers extraordinary trifunctional activities for hydrogen evolution reaction, oxygen evolution reaction (overpotential of 185 mV at 10 mA cm−2) and oxygen reduction reaction. The superior trifunctionality of CoFe‐NiFe/NC is rationalized with experimental and theoretical elucidation. Results reveal that the modulated electronic synergism between the Ni, Fe‐assisted Co sites and the adjacent N‐bridged carbon matrix decisively favors the appropriate binding of intermediates for promoted redox kinetics. Consequently, stand‐alone CoFe‐NiFe/NC cathode contributes to high‐performance aqueous/flexible zinc‐air batteries (ZABs), exhibiting high power/specific energy and excellent cycling stability. Remarkably, CoFe‐NiFe/NC‐based alkaline water electrolyzer requires merely 1.51 V to reach 10 mA cm−2, and a self‐driven water splitting system yields a high H2 evolution rate. This unique heterostructure monolith would open up opportunities for developing high‐efficiency multifunctional catalysts and advanced energy utilization devices. An integrated heterostructure monolith of biphasic nanoalloys encasing in interlaced N‐doped carbon nanoflake arrays is rationally constructed. Such unconventional catalyst delivers extraordinary hydrogen evolution reaction (HER)/oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) activities due to more accessible active sites and reinforced interfacial conjugation. The crafted multifunctional catalyst demonstrates superiority for high‐performance rechargeable/flexible Zn‐air batteries, water electrolyzer and self‐powered water splitting.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202402933</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Chemical reduction ; Conjugation ; Electrocatalysts ; Electron transfer ; Energy utilization ; flexible zinc‐air batteries ; HER/OER/ORR overpotentials ; Heterostructures ; Hydrogen evolution reactions ; Intermetallic compounds ; Iron compounds ; Mass transport ; Metal air batteries ; Monolithic materials ; multifunctional catalysis ; nanoalloy electrocatalysts ; Nanoalloys ; Nickel compounds ; overall water splitting ; Oxygen evolution reactions ; Oxygen reduction reactions ; Reaction kinetics ; Specific energy ; Water splitting ; Zinc-oxygen batteries</subject><ispartof>Advanced functional materials, 2024-09, Vol.34 (38), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-1806cb751f99f2a6fd504b630349c0a3cef93c2a2913e7b03b0c98896f525b513</citedby><cites>FETCH-LOGICAL-c3173-1806cb751f99f2a6fd504b630349c0a3cef93c2a2913e7b03b0c98896f525b513</cites><orcidid>0000-0002-2362-7776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Xuhuan</creatorcontrib><creatorcontrib>Mao, Haoning</creatorcontrib><creatorcontrib>Zhou, Zining</creatorcontrib><creatorcontrib>Li, Keer</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Ye, Qiong</creatorcontrib><creatorcontrib>Liu, Boping</creatorcontrib><creatorcontrib>Fang, Yueping</creatorcontrib><creatorcontrib>Cai, Xin</creatorcontrib><title>Biphasic Nanoalloys‐Based Trifunctional Monolith for High‐Performance Flexible Zn‐Air Batteries and Self‐Driven Water Splitting</title><title>Advanced functional materials</title><description>Sufficient integration of multiple active moieties and correlated heterostructure engineering are pivotal to optimize the reaction kinetics and the intrinsic activities of heterogeneous electrocatalysts. Herein, an integrated heterostructure of biphasic nanoalloys are constructed, encasing in in situ grown and interlaced nitrogen‐doped carbon nanoflake arrays (CoFe‐NiFe/NC). Well‐designed CoFe‐NiFe/NC owns more accessible active sites and interfacial conjugation effects, jointly accelerating the electron transfer and mass transport for multifunctional electrocatalysis. Such unconventional monolith delivers extraordinary trifunctional activities for hydrogen evolution reaction, oxygen evolution reaction (overpotential of 185 mV at 10 mA cm−2) and oxygen reduction reaction. The superior trifunctionality of CoFe‐NiFe/NC is rationalized with experimental and theoretical elucidation. Results reveal that the modulated electronic synergism between the Ni, Fe‐assisted Co sites and the adjacent N‐bridged carbon matrix decisively favors the appropriate binding of intermediates for promoted redox kinetics. Consequently, stand‐alone CoFe‐NiFe/NC cathode contributes to high‐performance aqueous/flexible zinc‐air batteries (ZABs), exhibiting high power/specific energy and excellent cycling stability. Remarkably, CoFe‐NiFe/NC‐based alkaline water electrolyzer requires merely 1.51 V to reach 10 mA cm−2, and a self‐driven water splitting system yields a high H2 evolution rate. This unique heterostructure monolith would open up opportunities for developing high‐efficiency multifunctional catalysts and advanced energy utilization devices. An integrated heterostructure monolith of biphasic nanoalloys encasing in interlaced N‐doped carbon nanoflake arrays is rationally constructed. Such unconventional catalyst delivers extraordinary hydrogen evolution reaction (HER)/oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) activities due to more accessible active sites and reinforced interfacial conjugation. The crafted multifunctional catalyst demonstrates superiority for high‐performance rechargeable/flexible Zn‐air batteries, water electrolyzer and self‐powered water splitting.</description><subject>Carbon</subject><subject>Chemical reduction</subject><subject>Conjugation</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Energy utilization</subject><subject>flexible zinc‐air batteries</subject><subject>HER/OER/ORR overpotentials</subject><subject>Heterostructures</subject><subject>Hydrogen evolution reactions</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Mass transport</subject><subject>Metal air batteries</subject><subject>Monolithic materials</subject><subject>multifunctional catalysis</subject><subject>nanoalloy electrocatalysts</subject><subject>Nanoalloys</subject><subject>Nickel compounds</subject><subject>overall water splitting</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Reaction kinetics</subject><subject>Specific energy</subject><subject>Water splitting</subject><subject>Zinc-oxygen batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPQjEQhW-MJiK6dd3ENdjHfXXJQ8QE1ASMxs1Nb28LJaXF9qKyc-fW3-gvsQSDS2czMznfmWROFJ0j2EYQ4ktWyWUbQxxDTAk5iBooRWmLQJwf7mf0dBydeL-AEGUZiRvRZ1et5swrDm6ZsUxru_HfH19d5kUFpk7JteG1soZpMLbGalXPgbQODNVsHrh74cK2ZIYLMNDiXZVagGcTlI5yoMvqWjglPGCmAhOhZRD6Tr0KAx5ZkMBkFS7WysxOoyPJtBdnv70ZPQyupr1ha3R3fdPrjFqcoIy0UA5TXmYJkpRKzFJZJTAuUwJJTDlkhAtJCccMU0REVkJSQk7znKYywUmZINKMLnZ3V86-rIWvi4Vdu_CeLwgKRXGK80C1dxR31nsnZLFyasncpkCw2IZdbMMu9mEHA90Z3pQWm3_ootMfjP-8Px1PiF0</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Yang, Xuhuan</creator><creator>Mao, Haoning</creator><creator>Zhou, Zining</creator><creator>Li, Keer</creator><creator>Li, Chen</creator><creator>Ye, Qiong</creator><creator>Liu, Boping</creator><creator>Fang, Yueping</creator><creator>Cai, Xin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2362-7776</orcidid></search><sort><creationdate>20240901</creationdate><title>Biphasic Nanoalloys‐Based Trifunctional Monolith for High‐Performance Flexible Zn‐Air Batteries and Self‐Driven Water Splitting</title><author>Yang, Xuhuan ; Mao, Haoning ; Zhou, Zining ; Li, Keer ; Li, Chen ; Ye, Qiong ; Liu, Boping ; Fang, Yueping ; Cai, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-1806cb751f99f2a6fd504b630349c0a3cef93c2a2913e7b03b0c98896f525b513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Chemical reduction</topic><topic>Conjugation</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Energy utilization</topic><topic>flexible zinc‐air batteries</topic><topic>HER/OER/ORR overpotentials</topic><topic>Heterostructures</topic><topic>Hydrogen evolution reactions</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Mass transport</topic><topic>Metal air batteries</topic><topic>Monolithic materials</topic><topic>multifunctional catalysis</topic><topic>nanoalloy electrocatalysts</topic><topic>Nanoalloys</topic><topic>Nickel compounds</topic><topic>overall water splitting</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Reaction kinetics</topic><topic>Specific energy</topic><topic>Water splitting</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xuhuan</creatorcontrib><creatorcontrib>Mao, Haoning</creatorcontrib><creatorcontrib>Zhou, Zining</creatorcontrib><creatorcontrib>Li, Keer</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Ye, Qiong</creatorcontrib><creatorcontrib>Liu, Boping</creatorcontrib><creatorcontrib>Fang, Yueping</creatorcontrib><creatorcontrib>Cai, Xin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xuhuan</au><au>Mao, Haoning</au><au>Zhou, Zining</au><au>Li, Keer</au><au>Li, Chen</au><au>Ye, Qiong</au><au>Liu, Boping</au><au>Fang, Yueping</au><au>Cai, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biphasic Nanoalloys‐Based Trifunctional Monolith for High‐Performance Flexible Zn‐Air Batteries and Self‐Driven Water Splitting</atitle><jtitle>Advanced functional materials</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>34</volume><issue>38</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Sufficient integration of multiple active moieties and correlated heterostructure engineering are pivotal to optimize the reaction kinetics and the intrinsic activities of heterogeneous electrocatalysts. Herein, an integrated heterostructure of biphasic nanoalloys are constructed, encasing in in situ grown and interlaced nitrogen‐doped carbon nanoflake arrays (CoFe‐NiFe/NC). Well‐designed CoFe‐NiFe/NC owns more accessible active sites and interfacial conjugation effects, jointly accelerating the electron transfer and mass transport for multifunctional electrocatalysis. Such unconventional monolith delivers extraordinary trifunctional activities for hydrogen evolution reaction, oxygen evolution reaction (overpotential of 185 mV at 10 mA cm−2) and oxygen reduction reaction. The superior trifunctionality of CoFe‐NiFe/NC is rationalized with experimental and theoretical elucidation. Results reveal that the modulated electronic synergism between the Ni, Fe‐assisted Co sites and the adjacent N‐bridged carbon matrix decisively favors the appropriate binding of intermediates for promoted redox kinetics. Consequently, stand‐alone CoFe‐NiFe/NC cathode contributes to high‐performance aqueous/flexible zinc‐air batteries (ZABs), exhibiting high power/specific energy and excellent cycling stability. Remarkably, CoFe‐NiFe/NC‐based alkaline water electrolyzer requires merely 1.51 V to reach 10 mA cm−2, and a self‐driven water splitting system yields a high H2 evolution rate. This unique heterostructure monolith would open up opportunities for developing high‐efficiency multifunctional catalysts and advanced energy utilization devices. An integrated heterostructure monolith of biphasic nanoalloys encasing in interlaced N‐doped carbon nanoflake arrays is rationally constructed. Such unconventional catalyst delivers extraordinary hydrogen evolution reaction (HER)/oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) activities due to more accessible active sites and reinforced interfacial conjugation. The crafted multifunctional catalyst demonstrates superiority for high‐performance rechargeable/flexible Zn‐air batteries, water electrolyzer and self‐powered water splitting.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202402933</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2362-7776</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-09, Vol.34 (38), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3111192628
source Wiley
subjects Carbon
Chemical reduction
Conjugation
Electrocatalysts
Electron transfer
Energy utilization
flexible zinc‐air batteries
HER/OER/ORR overpotentials
Heterostructures
Hydrogen evolution reactions
Intermetallic compounds
Iron compounds
Mass transport
Metal air batteries
Monolithic materials
multifunctional catalysis
nanoalloy electrocatalysts
Nanoalloys
Nickel compounds
overall water splitting
Oxygen evolution reactions
Oxygen reduction reactions
Reaction kinetics
Specific energy
Water splitting
Zinc-oxygen batteries
title Biphasic Nanoalloys‐Based Trifunctional Monolith for High‐Performance Flexible Zn‐Air Batteries and Self‐Driven Water Splitting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biphasic%20Nanoalloys%E2%80%90Based%20Trifunctional%20Monolith%20for%20High%E2%80%90Performance%20Flexible%20Zn%E2%80%90Air%20Batteries%20and%20Self%E2%80%90Driven%20Water%20Splitting&rft.jtitle=Advanced%20functional%20materials&rft.au=Yang,%20Xuhuan&rft.date=2024-09-01&rft.volume=34&rft.issue=38&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202402933&rft_dat=%3Cproquest_cross%3E3111192628%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3173-1806cb751f99f2a6fd504b630349c0a3cef93c2a2913e7b03b0c98896f525b513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3111192628&rft_id=info:pmid/&rfr_iscdi=true