Loading…

A Unique Amorphous Porous BiSbOx Nanotube with Abundant Unsaturated Sb‐Stabilized BiO8−x Sites for Efficient CO2 Electroreduction in a Wide Potential Window

The CO2 electroreduction reaction using sustainable electricity emerges as a viable strategy to produce high‐value‐added and profitable chemicals. The achievement of superior activity at a lower overpotential and higher selectivity in a wide potential window is vitally important for large‐scale indu...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-09, Vol.34 (37), p.n/a
Main Authors: Li, Xin, Wang, Jun‐Hao, Yuan, Chen‐Yue, Sun, Qi‐Wen, Shao, Jiang, Li, Xing‐Chi, Feng, Zhao‐Lu, Dong, Hao, Li, Chen, Zhang, Ya‐Wen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 37
container_start_page
container_title Advanced functional materials
container_volume 34
creator Li, Xin
Wang, Jun‐Hao
Yuan, Chen‐Yue
Sun, Qi‐Wen
Shao, Jiang
Li, Xing‐Chi
Feng, Zhao‐Lu
Dong, Hao
Li, Chen
Zhang, Ya‐Wen
description The CO2 electroreduction reaction using sustainable electricity emerges as a viable strategy to produce high‐value‐added and profitable chemicals. The achievement of superior activity at a lower overpotential and higher selectivity in a wide potential window is vitally important for large‐scale industrial applications. Herein, a carbon‐composite amorphous porous BiSbOx nanotube with abundant unsaturated sites is reported to boost the conversion of CO2 to formate, exhibiting a formate selectivity of >90% in an extremely broad range of potentials from −0.5 to −1.4 V versus reversible hydrogen electrode (RHE) and a maximal energy conversion efficiency of 77.1%. Importantly, pure formic acid solution is directly obtained in a solid‐electrolyte cell for industrial‐scale applications. The porous tubular structure can expose more catalytic active sites, accelerate the mass transfer, and show fast surface charge transfer. Moreover, the unique coordination‐unsaturated Sb‐stabilized BiO8−x site can not only enhance the adsorption and activation of CO2 but also reasonably balance the stabilization and hydrogenation of *OCHO intermediate, thus leading to its obviously higher catalytic performance. As a result, a novel amorphous porous BiSbOx nanotube is successfully designed for efficient CO2 electroreduction, which may shed new light on developing many more amorphous composite metal oxide catalysts for conversion of inert small molecules. The amorphous porous BiSbOx nanotube with abundant coordination‐unsaturated Sb‐stabilized BiO8−x sites is superior for the reduction of CO2 to formate, exhibiting excellent catalytic activity and stability, high energy conversion efficiency of ≈80%, and prominent selectivity toward formate of >90% in a record potential window of ≈1000 mV.
doi_str_mv 10.1002/adfm.202402220
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3111192807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111192807</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2330-a3e0d468f9d172141abd0b89905dc8ecb944bc632549eea1ef923e1348ecf7653</originalsourceid><addsrcrecordid>eNo9UctOwzAQjBBIlMKVsyXOAb-axzEtLSAVghQquEV27Kiu0jg4jtpy4sgR8QV8W78EV0Xdy-xoZ3ekHc-7RPAaQYhvmCiX1xhiCjHG8MjroQAFPoE4Oj706O3UO2vbBYQoDAnteb8JmNXqvZMgWWrTzHXXgmdtdjBUGU_X4InV2nZcgpWyc5Dwrhastm6rZbYzzEoBMr79_M4s46pSH44PVRptv37WIFNWtqDUBozLUhVKusVRisG4koU12kjRFVbpGqgaMPCqhHTm1qkUqxythV6deyclq1p58Y99bzYZv4zu_Wl69zBKpn6DCYE-IxIKGkRlLFCIEUWMC8ijOIYDUUSy4DGlvAgIHtBYSoZkGWMiEaFuVobBgPS9q_3dxmj3jtbmC92Z2lnmBLmKcQRDp4r3qpWq5CZvjFoys8kRzHcR5LsI8kMEeXI7eTww8gfth4BI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111192807</pqid></control><display><type>article</type><title>A Unique Amorphous Porous BiSbOx Nanotube with Abundant Unsaturated Sb‐Stabilized BiO8−x Sites for Efficient CO2 Electroreduction in a Wide Potential Window</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Li, Xin ; Wang, Jun‐Hao ; Yuan, Chen‐Yue ; Sun, Qi‐Wen ; Shao, Jiang ; Li, Xing‐Chi ; Feng, Zhao‐Lu ; Dong, Hao ; Li, Chen ; Zhang, Ya‐Wen</creator><creatorcontrib>Li, Xin ; Wang, Jun‐Hao ; Yuan, Chen‐Yue ; Sun, Qi‐Wen ; Shao, Jiang ; Li, Xing‐Chi ; Feng, Zhao‐Lu ; Dong, Hao ; Li, Chen ; Zhang, Ya‐Wen</creatorcontrib><description>The CO2 electroreduction reaction using sustainable electricity emerges as a viable strategy to produce high‐value‐added and profitable chemicals. The achievement of superior activity at a lower overpotential and higher selectivity in a wide potential window is vitally important for large‐scale industrial applications. Herein, a carbon‐composite amorphous porous BiSbOx nanotube with abundant unsaturated sites is reported to boost the conversion of CO2 to formate, exhibiting a formate selectivity of &gt;90% in an extremely broad range of potentials from −0.5 to −1.4 V versus reversible hydrogen electrode (RHE) and a maximal energy conversion efficiency of 77.1%. Importantly, pure formic acid solution is directly obtained in a solid‐electrolyte cell for industrial‐scale applications. The porous tubular structure can expose more catalytic active sites, accelerate the mass transfer, and show fast surface charge transfer. Moreover, the unique coordination‐unsaturated Sb‐stabilized BiO8−x site can not only enhance the adsorption and activation of CO2 but also reasonably balance the stabilization and hydrogenation of *OCHO intermediate, thus leading to its obviously higher catalytic performance. As a result, a novel amorphous porous BiSbOx nanotube is successfully designed for efficient CO2 electroreduction, which may shed new light on developing many more amorphous composite metal oxide catalysts for conversion of inert small molecules. The amorphous porous BiSbOx nanotube with abundant coordination‐unsaturated Sb‐stabilized BiO8−x sites is superior for the reduction of CO2 to formate, exhibiting excellent catalytic activity and stability, high energy conversion efficiency of ≈80%, and prominent selectivity toward formate of &gt;90% in a record potential window of ≈1000 mV.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202402220</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>amorphous materials ; Carbon dioxide ; Catalytic converters ; Charge transfer ; Chemical activity ; CO2 reduction reaction ; coordination‐unsaturated sites ; Electrowinning ; Energy conversion efficiency ; formate/formic acid ; Formic acid ; Industrial applications ; Mass transfer ; Metal oxides ; Nanotubes ; porous BiSbOx nanotubes ; Surface charge</subject><ispartof>Advanced functional materials, 2024-09, Vol.34 (37), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1871-7507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Jun‐Hao</creatorcontrib><creatorcontrib>Yuan, Chen‐Yue</creatorcontrib><creatorcontrib>Sun, Qi‐Wen</creatorcontrib><creatorcontrib>Shao, Jiang</creatorcontrib><creatorcontrib>Li, Xing‐Chi</creatorcontrib><creatorcontrib>Feng, Zhao‐Lu</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Zhang, Ya‐Wen</creatorcontrib><title>A Unique Amorphous Porous BiSbOx Nanotube with Abundant Unsaturated Sb‐Stabilized BiO8−x Sites for Efficient CO2 Electroreduction in a Wide Potential Window</title><title>Advanced functional materials</title><description>The CO2 electroreduction reaction using sustainable electricity emerges as a viable strategy to produce high‐value‐added and profitable chemicals. The achievement of superior activity at a lower overpotential and higher selectivity in a wide potential window is vitally important for large‐scale industrial applications. Herein, a carbon‐composite amorphous porous BiSbOx nanotube with abundant unsaturated sites is reported to boost the conversion of CO2 to formate, exhibiting a formate selectivity of &gt;90% in an extremely broad range of potentials from −0.5 to −1.4 V versus reversible hydrogen electrode (RHE) and a maximal energy conversion efficiency of 77.1%. Importantly, pure formic acid solution is directly obtained in a solid‐electrolyte cell for industrial‐scale applications. The porous tubular structure can expose more catalytic active sites, accelerate the mass transfer, and show fast surface charge transfer. Moreover, the unique coordination‐unsaturated Sb‐stabilized BiO8−x site can not only enhance the adsorption and activation of CO2 but also reasonably balance the stabilization and hydrogenation of *OCHO intermediate, thus leading to its obviously higher catalytic performance. As a result, a novel amorphous porous BiSbOx nanotube is successfully designed for efficient CO2 electroreduction, which may shed new light on developing many more amorphous composite metal oxide catalysts for conversion of inert small molecules. The amorphous porous BiSbOx nanotube with abundant coordination‐unsaturated Sb‐stabilized BiO8−x sites is superior for the reduction of CO2 to formate, exhibiting excellent catalytic activity and stability, high energy conversion efficiency of ≈80%, and prominent selectivity toward formate of &gt;90% in a record potential window of ≈1000 mV.</description><subject>amorphous materials</subject><subject>Carbon dioxide</subject><subject>Catalytic converters</subject><subject>Charge transfer</subject><subject>Chemical activity</subject><subject>CO2 reduction reaction</subject><subject>coordination‐unsaturated sites</subject><subject>Electrowinning</subject><subject>Energy conversion efficiency</subject><subject>formate/formic acid</subject><subject>Formic acid</subject><subject>Industrial applications</subject><subject>Mass transfer</subject><subject>Metal oxides</subject><subject>Nanotubes</subject><subject>porous BiSbOx nanotubes</subject><subject>Surface charge</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UctOwzAQjBBIlMKVsyXOAb-axzEtLSAVghQquEV27Kiu0jg4jtpy4sgR8QV8W78EV0Xdy-xoZ3ekHc-7RPAaQYhvmCiX1xhiCjHG8MjroQAFPoE4Oj706O3UO2vbBYQoDAnteb8JmNXqvZMgWWrTzHXXgmdtdjBUGU_X4InV2nZcgpWyc5Dwrhastm6rZbYzzEoBMr79_M4s46pSH44PVRptv37WIFNWtqDUBozLUhVKusVRisG4koU12kjRFVbpGqgaMPCqhHTm1qkUqxythV6deyclq1p58Y99bzYZv4zu_Wl69zBKpn6DCYE-IxIKGkRlLFCIEUWMC8ijOIYDUUSy4DGlvAgIHtBYSoZkGWMiEaFuVobBgPS9q_3dxmj3jtbmC92Z2lnmBLmKcQRDp4r3qpWq5CZvjFoys8kRzHcR5LsI8kMEeXI7eTww8gfth4BI</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Li, Xin</creator><creator>Wang, Jun‐Hao</creator><creator>Yuan, Chen‐Yue</creator><creator>Sun, Qi‐Wen</creator><creator>Shao, Jiang</creator><creator>Li, Xing‐Chi</creator><creator>Feng, Zhao‐Lu</creator><creator>Dong, Hao</creator><creator>Li, Chen</creator><creator>Zhang, Ya‐Wen</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1871-7507</orcidid></search><sort><creationdate>20240901</creationdate><title>A Unique Amorphous Porous BiSbOx Nanotube with Abundant Unsaturated Sb‐Stabilized BiO8−x Sites for Efficient CO2 Electroreduction in a Wide Potential Window</title><author>Li, Xin ; Wang, Jun‐Hao ; Yuan, Chen‐Yue ; Sun, Qi‐Wen ; Shao, Jiang ; Li, Xing‐Chi ; Feng, Zhao‐Lu ; Dong, Hao ; Li, Chen ; Zhang, Ya‐Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2330-a3e0d468f9d172141abd0b89905dc8ecb944bc632549eea1ef923e1348ecf7653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>amorphous materials</topic><topic>Carbon dioxide</topic><topic>Catalytic converters</topic><topic>Charge transfer</topic><topic>Chemical activity</topic><topic>CO2 reduction reaction</topic><topic>coordination‐unsaturated sites</topic><topic>Electrowinning</topic><topic>Energy conversion efficiency</topic><topic>formate/formic acid</topic><topic>Formic acid</topic><topic>Industrial applications</topic><topic>Mass transfer</topic><topic>Metal oxides</topic><topic>Nanotubes</topic><topic>porous BiSbOx nanotubes</topic><topic>Surface charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Jun‐Hao</creatorcontrib><creatorcontrib>Yuan, Chen‐Yue</creatorcontrib><creatorcontrib>Sun, Qi‐Wen</creatorcontrib><creatorcontrib>Shao, Jiang</creatorcontrib><creatorcontrib>Li, Xing‐Chi</creatorcontrib><creatorcontrib>Feng, Zhao‐Lu</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Zhang, Ya‐Wen</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xin</au><au>Wang, Jun‐Hao</au><au>Yuan, Chen‐Yue</au><au>Sun, Qi‐Wen</au><au>Shao, Jiang</au><au>Li, Xing‐Chi</au><au>Feng, Zhao‐Lu</au><au>Dong, Hao</au><au>Li, Chen</au><au>Zhang, Ya‐Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Unique Amorphous Porous BiSbOx Nanotube with Abundant Unsaturated Sb‐Stabilized BiO8−x Sites for Efficient CO2 Electroreduction in a Wide Potential Window</atitle><jtitle>Advanced functional materials</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>34</volume><issue>37</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The CO2 electroreduction reaction using sustainable electricity emerges as a viable strategy to produce high‐value‐added and profitable chemicals. The achievement of superior activity at a lower overpotential and higher selectivity in a wide potential window is vitally important for large‐scale industrial applications. Herein, a carbon‐composite amorphous porous BiSbOx nanotube with abundant unsaturated sites is reported to boost the conversion of CO2 to formate, exhibiting a formate selectivity of &gt;90% in an extremely broad range of potentials from −0.5 to −1.4 V versus reversible hydrogen electrode (RHE) and a maximal energy conversion efficiency of 77.1%. Importantly, pure formic acid solution is directly obtained in a solid‐electrolyte cell for industrial‐scale applications. The porous tubular structure can expose more catalytic active sites, accelerate the mass transfer, and show fast surface charge transfer. Moreover, the unique coordination‐unsaturated Sb‐stabilized BiO8−x site can not only enhance the adsorption and activation of CO2 but also reasonably balance the stabilization and hydrogenation of *OCHO intermediate, thus leading to its obviously higher catalytic performance. As a result, a novel amorphous porous BiSbOx nanotube is successfully designed for efficient CO2 electroreduction, which may shed new light on developing many more amorphous composite metal oxide catalysts for conversion of inert small molecules. The amorphous porous BiSbOx nanotube with abundant coordination‐unsaturated Sb‐stabilized BiO8−x sites is superior for the reduction of CO2 to formate, exhibiting excellent catalytic activity and stability, high energy conversion efficiency of ≈80%, and prominent selectivity toward formate of &gt;90% in a record potential window of ≈1000 mV.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202402220</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1871-7507</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-09, Vol.34 (37), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3111192807
source Wiley-Blackwell Read & Publish Collection
subjects amorphous materials
Carbon dioxide
Catalytic converters
Charge transfer
Chemical activity
CO2 reduction reaction
coordination‐unsaturated sites
Electrowinning
Energy conversion efficiency
formate/formic acid
Formic acid
Industrial applications
Mass transfer
Metal oxides
Nanotubes
porous BiSbOx nanotubes
Surface charge
title A Unique Amorphous Porous BiSbOx Nanotube with Abundant Unsaturated Sb‐Stabilized BiO8−x Sites for Efficient CO2 Electroreduction in a Wide Potential Window
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Unique%20Amorphous%20Porous%20BiSbOx%20Nanotube%20with%20Abundant%20Unsaturated%20Sb%E2%80%90Stabilized%20BiO8%E2%88%92x%20Sites%20for%20Efficient%20CO2%20Electroreduction%20in%20a%20Wide%20Potential%20Window&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Xin&rft.date=2024-09-01&rft.volume=34&rft.issue=37&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202402220&rft_dat=%3Cproquest_wiley%3E3111192807%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2330-a3e0d468f9d172141abd0b89905dc8ecb944bc632549eea1ef923e1348ecf7653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3111192807&rft_id=info:pmid/&rfr_iscdi=true