Loading…

Research on speculation method for compressor map of PG9351FA gas turbine

A compressor map is usually represented by a limited number of feature points to speculate the entire operating range. Also, accurate compressor map models can be obtained quickly by using the appropriate methods. In this paper, 9351FA gas turbine is used as the research object, and a set of targete...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy Journal of power and energy, 2024-09, Vol.238 (6), p.954-968
Main Authors: Hao, Xuedi, Zhang, Zeyuan, Chi, Jinling, Sun, Lei, Zhang, Jiajin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c264t-345868679e3519cede3b4c1f2bfbccfd8cc835ab9cf99770ceb9d0a5b8c4187c3
container_end_page 968
container_issue 6
container_start_page 954
container_title Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy
container_volume 238
creator Hao, Xuedi
Zhang, Zeyuan
Chi, Jinling
Sun, Lei
Zhang, Jiajin
description A compressor map is usually represented by a limited number of feature points to speculate the entire operating range. Also, accurate compressor map models can be obtained quickly by using the appropriate methods. In this paper, 9351FA gas turbine is used as the research object, and a set of targeted compressor map speculation scheme is proposed. At 15 data points, high-precision compressor maps are obtained based on BP neural network, and this method is suitable for a large number of data points. At 6 data points, compressor maps are obtained based on the parameter estimation method, and this method is suitable for a small number of data points. The mean square deviation of the compressor map obtained by the neural network is about 0.002, while the minimum mean square deviation of the results of the parameter estimation method is 0.026 and the maximum mean square deviation is 0.088. Since the corrected speed line of 106.4 is almost vertical, the maximum error mean squared deviation and the maximum standard deviation occur on this line. Both methods are suitable for different sample sizes, and the speculated compressor maps are more reliable. The combination of the two methods can provide a set of reference methods for compressor map speculation.
doi_str_mv 10.1177/09576509241251909
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111276358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09576509241251909</sage_id><sourcerecordid>3111276358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-345868679e3519cede3b4c1f2bfbccfd8cc835ab9cf99770ceb9d0a5b8c4187c3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9dQ8JpNkWYqthYIiuh6SO0kfdJoxmVn4781QwYV4N_fAPee7cBC6p2RGqZSPRAtZCaJZSZmgmugLNGGkpAXTlbxEk_FejIZrdJPSgeQRkk3Q-s0lZyLscDjh1DkYjqbfZ926fhca7EPEENouupSybE2Hg8evK80FXc7x1iTcD9HuT-4WXXlzTO7uZ0_Rx_LpffFcbF5W68V8UwCryr7gpVCVqqR2maDBNY7bEqhn1lsA3ygAxYWxGrzWUhJwVjfECKugpEoCn6KHM7eL4XNwqa8PYYin_LLmlFImKy5UdtGzC2JIKTpfd3HfmvhVU1KPjdV_GsuZ2TmTzNb9Uv8PfAOuM2pl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111276358</pqid></control><display><type>article</type><title>Research on speculation method for compressor map of PG9351FA gas turbine</title><source>SAGE</source><source>IMechE Titles Via Sage</source><creator>Hao, Xuedi ; Zhang, Zeyuan ; Chi, Jinling ; Sun, Lei ; Zhang, Jiajin</creator><creatorcontrib>Hao, Xuedi ; Zhang, Zeyuan ; Chi, Jinling ; Sun, Lei ; Zhang, Jiajin</creatorcontrib><description>A compressor map is usually represented by a limited number of feature points to speculate the entire operating range. Also, accurate compressor map models can be obtained quickly by using the appropriate methods. In this paper, 9351FA gas turbine is used as the research object, and a set of targeted compressor map speculation scheme is proposed. At 15 data points, high-precision compressor maps are obtained based on BP neural network, and this method is suitable for a large number of data points. At 6 data points, compressor maps are obtained based on the parameter estimation method, and this method is suitable for a small number of data points. The mean square deviation of the compressor map obtained by the neural network is about 0.002, while the minimum mean square deviation of the results of the parameter estimation method is 0.026 and the maximum mean square deviation is 0.088. Since the corrected speed line of 106.4 is almost vertical, the maximum error mean squared deviation and the maximum standard deviation occur on this line. Both methods are suitable for different sample sizes, and the speculated compressor maps are more reliable. The combination of the two methods can provide a set of reference methods for compressor map speculation.</description><identifier>ISSN: 0957-6509</identifier><identifier>EISSN: 2041-2967</identifier><identifier>DOI: 10.1177/09576509241251909</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Back propagation networks ; Data points ; Error correction ; Gas turbines ; Mean square values ; Methods ; Neural networks ; Parameter estimation</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy, 2024-09, Vol.238 (6), p.954-968</ispartof><rights>IMechE 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-345868679e3519cede3b4c1f2bfbccfd8cc835ab9cf99770ceb9d0a5b8c4187c3</cites><orcidid>0009-0000-5842-3688 ; 0009-0001-2195-3228 ; 0000-0002-7584-6233 ; 0000-0003-4394-0564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09576509241251909$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09576509241251909$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21913,27924,27925,45059,45447,79364</link.rule.ids></links><search><creatorcontrib>Hao, Xuedi</creatorcontrib><creatorcontrib>Zhang, Zeyuan</creatorcontrib><creatorcontrib>Chi, Jinling</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Zhang, Jiajin</creatorcontrib><title>Research on speculation method for compressor map of PG9351FA gas turbine</title><title>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</title><description>A compressor map is usually represented by a limited number of feature points to speculate the entire operating range. Also, accurate compressor map models can be obtained quickly by using the appropriate methods. In this paper, 9351FA gas turbine is used as the research object, and a set of targeted compressor map speculation scheme is proposed. At 15 data points, high-precision compressor maps are obtained based on BP neural network, and this method is suitable for a large number of data points. At 6 data points, compressor maps are obtained based on the parameter estimation method, and this method is suitable for a small number of data points. The mean square deviation of the compressor map obtained by the neural network is about 0.002, while the minimum mean square deviation of the results of the parameter estimation method is 0.026 and the maximum mean square deviation is 0.088. Since the corrected speed line of 106.4 is almost vertical, the maximum error mean squared deviation and the maximum standard deviation occur on this line. Both methods are suitable for different sample sizes, and the speculated compressor maps are more reliable. The combination of the two methods can provide a set of reference methods for compressor map speculation.</description><subject>Back propagation networks</subject><subject>Data points</subject><subject>Error correction</subject><subject>Gas turbines</subject><subject>Mean square values</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><issn>0957-6509</issn><issn>2041-2967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9dQ8JpNkWYqthYIiuh6SO0kfdJoxmVn4781QwYV4N_fAPee7cBC6p2RGqZSPRAtZCaJZSZmgmugLNGGkpAXTlbxEk_FejIZrdJPSgeQRkk3Q-s0lZyLscDjh1DkYjqbfZ926fhca7EPEENouupSybE2Hg8evK80FXc7x1iTcD9HuT-4WXXlzTO7uZ0_Rx_LpffFcbF5W68V8UwCryr7gpVCVqqR2maDBNY7bEqhn1lsA3ygAxYWxGrzWUhJwVjfECKugpEoCn6KHM7eL4XNwqa8PYYin_LLmlFImKy5UdtGzC2JIKTpfd3HfmvhVU1KPjdV_GsuZ2TmTzNb9Uv8PfAOuM2pl</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Hao, Xuedi</creator><creator>Zhang, Zeyuan</creator><creator>Chi, Jinling</creator><creator>Sun, Lei</creator><creator>Zhang, Jiajin</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0000-5842-3688</orcidid><orcidid>https://orcid.org/0009-0001-2195-3228</orcidid><orcidid>https://orcid.org/0000-0002-7584-6233</orcidid><orcidid>https://orcid.org/0000-0003-4394-0564</orcidid></search><sort><creationdate>20240901</creationdate><title>Research on speculation method for compressor map of PG9351FA gas turbine</title><author>Hao, Xuedi ; Zhang, Zeyuan ; Chi, Jinling ; Sun, Lei ; Zhang, Jiajin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-345868679e3519cede3b4c1f2bfbccfd8cc835ab9cf99770ceb9d0a5b8c4187c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Back propagation networks</topic><topic>Data points</topic><topic>Error correction</topic><topic>Gas turbines</topic><topic>Mean square values</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Xuedi</creatorcontrib><creatorcontrib>Zhang, Zeyuan</creatorcontrib><creatorcontrib>Chi, Jinling</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Zhang, Jiajin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Xuedi</au><au>Zhang, Zeyuan</au><au>Chi, Jinling</au><au>Sun, Lei</au><au>Zhang, Jiajin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on speculation method for compressor map of PG9351FA gas turbine</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>238</volume><issue>6</issue><spage>954</spage><epage>968</epage><pages>954-968</pages><issn>0957-6509</issn><eissn>2041-2967</eissn><abstract>A compressor map is usually represented by a limited number of feature points to speculate the entire operating range. Also, accurate compressor map models can be obtained quickly by using the appropriate methods. In this paper, 9351FA gas turbine is used as the research object, and a set of targeted compressor map speculation scheme is proposed. At 15 data points, high-precision compressor maps are obtained based on BP neural network, and this method is suitable for a large number of data points. At 6 data points, compressor maps are obtained based on the parameter estimation method, and this method is suitable for a small number of data points. The mean square deviation of the compressor map obtained by the neural network is about 0.002, while the minimum mean square deviation of the results of the parameter estimation method is 0.026 and the maximum mean square deviation is 0.088. Since the corrected speed line of 106.4 is almost vertical, the maximum error mean squared deviation and the maximum standard deviation occur on this line. Both methods are suitable for different sample sizes, and the speculated compressor maps are more reliable. The combination of the two methods can provide a set of reference methods for compressor map speculation.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09576509241251909</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0000-5842-3688</orcidid><orcidid>https://orcid.org/0009-0001-2195-3228</orcidid><orcidid>https://orcid.org/0000-0002-7584-6233</orcidid><orcidid>https://orcid.org/0000-0003-4394-0564</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-6509
ispartof Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy, 2024-09, Vol.238 (6), p.954-968
issn 0957-6509
2041-2967
language eng
recordid cdi_proquest_journals_3111276358
source SAGE; IMechE Titles Via Sage
subjects Back propagation networks
Data points
Error correction
Gas turbines
Mean square values
Methods
Neural networks
Parameter estimation
title Research on speculation method for compressor map of PG9351FA gas turbine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20speculation%20method%20for%20compressor%20map%20of%20PG9351FA%20gas%20turbine&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20A,%20Journal%20of%20power%20and%20energy&rft.au=Hao,%20Xuedi&rft.date=2024-09-01&rft.volume=238&rft.issue=6&rft.spage=954&rft.epage=968&rft.pages=954-968&rft.issn=0957-6509&rft.eissn=2041-2967&rft_id=info:doi/10.1177/09576509241251909&rft_dat=%3Cproquest_cross%3E3111276358%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-345868679e3519cede3b4c1f2bfbccfd8cc835ab9cf99770ceb9d0a5b8c4187c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3111276358&rft_id=info:pmid/&rft_sage_id=10.1177_09576509241251909&rfr_iscdi=true