Loading…
Prediction of field dependent damping force as a function of magnetorheological damper design parameters using a machine learning method
This paper presents a machine learning approach to predict damping force as a function of its mechanical design parameters in a magnetorheological (MR) damper. The employed machine learning method is extreme learning machine. The studied MR damper is equipped by an MR valve with serpentine flux. The...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3124 |
creator | Fadhlillah, Khulil Jannata Bahiuddin, Irfan Pratama, Nico Imaduddin, Fitrian Ubaidillah Mazlan, Saiful Amri Nazmi, Nurhazimah |
description | This paper presents a machine learning approach to predict damping force as a function of its mechanical design parameters in a magnetorheological (MR) damper. The employed machine learning method is extreme learning machine. The studied MR damper is equipped by an MR valve with serpentine flux. The training data is firstly generated using FEMM (Finite Element Magnetic Method) software by varying several parameters. Then, the obtained magnetic flux density is translated into damping force by employing the steady state pressure drop equations. The results of the FEMM simulation and the calculation of the damping force are firstly evaluated to check the pattern. Then, the machine learning is applied. This performance design is built with extreme learning machine algorithms in Python. After simulation, hidden node number of 20 is selected because the simple neural network structure, high R-squared value, and low RMSE compared other hidden node numbers. In general, the R-squared value for hidden node number more than 10 is higher than 0.8 showing a good agreement between the reference data and the predicted values. |
doi_str_mv | 10.1063/5.0228150 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3111290589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111290589</sourcerecordid><originalsourceid>FETCH-LOGICAL-p630-e6b193d873b29fcf76f90a68f021d215c3f0e40127b4ac62aafba51dcf2a91b63</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVw4A0scUNK8U_jJEdU8SdVgkMP3KKNvU5dpXaw0wNvwGOT0IrTSrvfzGqGkFvOFpwp-ZAvmBAlz9kZmfE851mhuDonM8aqZSaW8vOSXKW0Y0xURVHOyM9HROP04IKnwVLrsDPUYI_eoB-ogX3vfEttiBopJArUHvw_vofW4xDiFkMXWqeh-1NgHC2Saz3tIcIeB4yJHtJkBKNGb51H2iFEP63G-zaYa3JhoUt4c5pzsnl-2qxes_X7y9vqcZ31SrIMVcMracpCNqKy2hbKVgxUaZngRvBcS8twybgomiVoJQBsAzk32gqoeKPknNwdbfsYvg6YhnoXDtGPH2vJORcVy8tqpO6PVNJugClt3Ue3h_hdc1ZPRdd5fSpa_gLJ93J3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3111290589</pqid></control><display><type>conference_proceeding</type><title>Prediction of field dependent damping force as a function of magnetorheological damper design parameters using a machine learning method</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Fadhlillah, Khulil Jannata ; Bahiuddin, Irfan ; Pratama, Nico ; Imaduddin, Fitrian ; Ubaidillah ; Mazlan, Saiful Amri ; Nazmi, Nurhazimah</creator><contributor>Prabowo, Aditya Rio ; Tjahjana, Dominicus Danardono Dwi Prija ; Imaddudin, Fitrian ; Ubaidillah ; Yaningsih, Indri</contributor><creatorcontrib>Fadhlillah, Khulil Jannata ; Bahiuddin, Irfan ; Pratama, Nico ; Imaduddin, Fitrian ; Ubaidillah ; Mazlan, Saiful Amri ; Nazmi, Nurhazimah ; Prabowo, Aditya Rio ; Tjahjana, Dominicus Danardono Dwi Prija ; Imaddudin, Fitrian ; Ubaidillah ; Yaningsih, Indri</creatorcontrib><description>This paper presents a machine learning approach to predict damping force as a function of its mechanical design parameters in a magnetorheological (MR) damper. The employed machine learning method is extreme learning machine. The studied MR damper is equipped by an MR valve with serpentine flux. The training data is firstly generated using FEMM (Finite Element Magnetic Method) software by varying several parameters. Then, the obtained magnetic flux density is translated into damping force by employing the steady state pressure drop equations. The results of the FEMM simulation and the calculation of the damping force are firstly evaluated to check the pattern. Then, the machine learning is applied. This performance design is built with extreme learning machine algorithms in Python. After simulation, hidden node number of 20 is selected because the simple neural network structure, high R-squared value, and low RMSE compared other hidden node numbers. In general, the R-squared value for hidden node number more than 10 is higher than 0.8 showing a good agreement between the reference data and the predicted values.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0228150</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Computer simulation ; Damping ; Design parameters ; Extreme values ; Flux density ; Machine learning ; Magnetic flux ; Magnetic methods ; Neural networks ; Nodes ; Pressure drop</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3124 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Prabowo, Aditya Rio</contributor><contributor>Tjahjana, Dominicus Danardono Dwi Prija</contributor><contributor>Imaddudin, Fitrian</contributor><contributor>Ubaidillah</contributor><contributor>Yaningsih, Indri</contributor><creatorcontrib>Fadhlillah, Khulil Jannata</creatorcontrib><creatorcontrib>Bahiuddin, Irfan</creatorcontrib><creatorcontrib>Pratama, Nico</creatorcontrib><creatorcontrib>Imaduddin, Fitrian</creatorcontrib><creatorcontrib>Ubaidillah</creatorcontrib><creatorcontrib>Mazlan, Saiful Amri</creatorcontrib><creatorcontrib>Nazmi, Nurhazimah</creatorcontrib><title>Prediction of field dependent damping force as a function of magnetorheological damper design parameters using a machine learning method</title><title>AIP Conference Proceedings</title><description>This paper presents a machine learning approach to predict damping force as a function of its mechanical design parameters in a magnetorheological (MR) damper. The employed machine learning method is extreme learning machine. The studied MR damper is equipped by an MR valve with serpentine flux. The training data is firstly generated using FEMM (Finite Element Magnetic Method) software by varying several parameters. Then, the obtained magnetic flux density is translated into damping force by employing the steady state pressure drop equations. The results of the FEMM simulation and the calculation of the damping force are firstly evaluated to check the pattern. Then, the machine learning is applied. This performance design is built with extreme learning machine algorithms in Python. After simulation, hidden node number of 20 is selected because the simple neural network structure, high R-squared value, and low RMSE compared other hidden node numbers. In general, the R-squared value for hidden node number more than 10 is higher than 0.8 showing a good agreement between the reference data and the predicted values.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Damping</subject><subject>Design parameters</subject><subject>Extreme values</subject><subject>Flux density</subject><subject>Machine learning</subject><subject>Magnetic flux</subject><subject>Magnetic methods</subject><subject>Neural networks</subject><subject>Nodes</subject><subject>Pressure drop</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kM1OwzAQhC0EEqVw4A0scUNK8U_jJEdU8SdVgkMP3KKNvU5dpXaw0wNvwGOT0IrTSrvfzGqGkFvOFpwp-ZAvmBAlz9kZmfE851mhuDonM8aqZSaW8vOSXKW0Y0xURVHOyM9HROP04IKnwVLrsDPUYI_eoB-ogX3vfEttiBopJArUHvw_vofW4xDiFkMXWqeh-1NgHC2Saz3tIcIeB4yJHtJkBKNGb51H2iFEP63G-zaYa3JhoUt4c5pzsnl-2qxes_X7y9vqcZ31SrIMVcMracpCNqKy2hbKVgxUaZngRvBcS8twybgomiVoJQBsAzk32gqoeKPknNwdbfsYvg6YhnoXDtGPH2vJORcVy8tqpO6PVNJugClt3Ue3h_hdc1ZPRdd5fSpa_gLJ93J3</recordid><startdate>20240930</startdate><enddate>20240930</enddate><creator>Fadhlillah, Khulil Jannata</creator><creator>Bahiuddin, Irfan</creator><creator>Pratama, Nico</creator><creator>Imaduddin, Fitrian</creator><creator>Ubaidillah</creator><creator>Mazlan, Saiful Amri</creator><creator>Nazmi, Nurhazimah</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240930</creationdate><title>Prediction of field dependent damping force as a function of magnetorheological damper design parameters using a machine learning method</title><author>Fadhlillah, Khulil Jannata ; Bahiuddin, Irfan ; Pratama, Nico ; Imaduddin, Fitrian ; Ubaidillah ; Mazlan, Saiful Amri ; Nazmi, Nurhazimah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p630-e6b193d873b29fcf76f90a68f021d215c3f0e40127b4ac62aafba51dcf2a91b63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Damping</topic><topic>Design parameters</topic><topic>Extreme values</topic><topic>Flux density</topic><topic>Machine learning</topic><topic>Magnetic flux</topic><topic>Magnetic methods</topic><topic>Neural networks</topic><topic>Nodes</topic><topic>Pressure drop</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fadhlillah, Khulil Jannata</creatorcontrib><creatorcontrib>Bahiuddin, Irfan</creatorcontrib><creatorcontrib>Pratama, Nico</creatorcontrib><creatorcontrib>Imaduddin, Fitrian</creatorcontrib><creatorcontrib>Ubaidillah</creatorcontrib><creatorcontrib>Mazlan, Saiful Amri</creatorcontrib><creatorcontrib>Nazmi, Nurhazimah</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fadhlillah, Khulil Jannata</au><au>Bahiuddin, Irfan</au><au>Pratama, Nico</au><au>Imaduddin, Fitrian</au><au>Ubaidillah</au><au>Mazlan, Saiful Amri</au><au>Nazmi, Nurhazimah</au><au>Prabowo, Aditya Rio</au><au>Tjahjana, Dominicus Danardono Dwi Prija</au><au>Imaddudin, Fitrian</au><au>Ubaidillah</au><au>Yaningsih, Indri</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Prediction of field dependent damping force as a function of magnetorheological damper design parameters using a machine learning method</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-09-30</date><risdate>2024</risdate><volume>3124</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This paper presents a machine learning approach to predict damping force as a function of its mechanical design parameters in a magnetorheological (MR) damper. The employed machine learning method is extreme learning machine. The studied MR damper is equipped by an MR valve with serpentine flux. The training data is firstly generated using FEMM (Finite Element Magnetic Method) software by varying several parameters. Then, the obtained magnetic flux density is translated into damping force by employing the steady state pressure drop equations. The results of the FEMM simulation and the calculation of the damping force are firstly evaluated to check the pattern. Then, the machine learning is applied. This performance design is built with extreme learning machine algorithms in Python. After simulation, hidden node number of 20 is selected because the simple neural network structure, high R-squared value, and low RMSE compared other hidden node numbers. In general, the R-squared value for hidden node number more than 10 is higher than 0.8 showing a good agreement between the reference data and the predicted values.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0228150</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2024, Vol.3124 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3111290589 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Algorithms Computer simulation Damping Design parameters Extreme values Flux density Machine learning Magnetic flux Magnetic methods Neural networks Nodes Pressure drop |
title | Prediction of field dependent damping force as a function of magnetorheological damper design parameters using a machine learning method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Prediction%20of%20field%20dependent%20damping%20force%20as%20a%20function%20of%20magnetorheological%20damper%20design%20parameters%20using%20a%20machine%20learning%20method&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Fadhlillah,%20Khulil%20Jannata&rft.date=2024-09-30&rft.volume=3124&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0228150&rft_dat=%3Cproquest_scita%3E3111290589%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p630-e6b193d873b29fcf76f90a68f021d215c3f0e40127b4ac62aafba51dcf2a91b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3111290589&rft_id=info:pmid/&rfr_iscdi=true |