Loading…

Chemical Interface Structures in CdS/RbInSe2/Cu(In,Ga)Se2 Thin‐Film Solar Cell Stacks

Performance‐enhancing heavy alkali‐based post‐deposition treatments (PDT) of Cu(In,Ga)Se2 (CIGSe) thin‐film solar cells absorbers often induce the formation of a Rb‐ In‐Se phase on the CIGSe absorber. Co‐evaporation of an interfacial RbInSe2 (RISe) layer between buffer and absorber can also benefit...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-10, Vol.34 (40), p.n/a
Main Authors: Bombsch, Jakob, Kodalle, Tim, Garcia‐Diez, Raul, Hartmann, Claudia, Félix, Roberto, Ueda, Shigenori, Wilks, Regan G., Kaufmann, Christian A., Bär, Marcus
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 40
container_start_page
container_title Advanced functional materials
container_volume 34
creator Bombsch, Jakob
Kodalle, Tim
Garcia‐Diez, Raul
Hartmann, Claudia
Félix, Roberto
Ueda, Shigenori
Wilks, Regan G.
Kaufmann, Christian A.
Bär, Marcus
description Performance‐enhancing heavy alkali‐based post‐deposition treatments (PDT) of Cu(In,Ga)Se2 (CIGSe) thin‐film solar cells absorbers often induce the formation of a Rb‐ In‐Se phase on the CIGSe absorber. Co‐evaporation of an interfacial RbInSe2 (RISe) layer between buffer and absorber can also benefit cell performance. A detailed analysis of the chemical interface structures in CdS/RISe/CIGSe layer stacks is performed using hard X‐ray photoelectron spectroscopy (HAXPES). For comparison, stacks without RISe and based on RbF PDT CIGSe absorbers are also studied. When aiming for the direct co‐evaporation of a RISe layer on the CIGSe absorber, the formation of an additional In‐Se phase is found. For the RbF PDT CIGSe absorbers, the study only finds small amounts of Rb and no indication for a RISe layer formation. Examining layer stacks prepared via additional chemical bath deposition (CBD) of CdS reveals a clear impact of the presence of Rb (or of Rb‐containing species) on the CIGSe surface. In these cases, an increase of the induction/coalescence period is found at the beginning of the CBD buffer layer growth process and the formation of Cd─Se bonds; thereafter, a more compact CdS layer growth is observed. A detailed study of the chemical interface structures in CdS/RbInSe2/Cu(In,Ga)Se2 solar cell layer stacks using hard X‐ ray photoelectron spectroscopy is conducted. The RbInSe2 layer is found to be Rb‐deficient and a clear impact of the presence of Rb (species) is observed on the duration of the induction period of the CdS chemical bath deposition process, resulting in the enhanced formation of Cd─Se bonds.
doi_str_mv 10.1002/adfm.202403685
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3111404576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111404576</sourcerecordid><originalsourceid>FETCH-LOGICAL-n2775-31ba48f3751e955d4a8a8a26bb77820db846f4776df3119d12810a4ceaa614fb3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKevPgd8UbBbbpIm3eOobhYmgp3oW0jblHWmmaYtsjd_gr_RX2LHZNyHew-ccw98CF0CGQEhdKyLsh5RQjlhIgqP0AAEiIARGh0fbng7RWdNsyYEpGR8gF7jlamrXFucuNb4UucGp63v8rbzpsGVw3GRjp-zxKWGjuPuOnG3c33TC7xcVe73-2dW2RqnG6s9jo21fVrn7805Oim1bczF_x6il9n9Mn4IFk_zJJ4uAkelDAMGmeZRyWQIZhKGBddRP1RkmZQRJUUWcVFyKUVRMoBJATQConlutBbAy4wN0dX-74fffHamadV603nXV6o-AJzwUIreNdm7viprturDV7X2WwVE7cipHTl1IKemd7PHg2J_mONi1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111404576</pqid></control><display><type>article</type><title>Chemical Interface Structures in CdS/RbInSe2/Cu(In,Ga)Se2 Thin‐Film Solar Cell Stacks</title><source>Wiley</source><creator>Bombsch, Jakob ; Kodalle, Tim ; Garcia‐Diez, Raul ; Hartmann, Claudia ; Félix, Roberto ; Ueda, Shigenori ; Wilks, Regan G. ; Kaufmann, Christian A. ; Bär, Marcus</creator><creatorcontrib>Bombsch, Jakob ; Kodalle, Tim ; Garcia‐Diez, Raul ; Hartmann, Claudia ; Félix, Roberto ; Ueda, Shigenori ; Wilks, Regan G. ; Kaufmann, Christian A. ; Bär, Marcus</creatorcontrib><description>Performance‐enhancing heavy alkali‐based post‐deposition treatments (PDT) of Cu(In,Ga)Se2 (CIGSe) thin‐film solar cells absorbers often induce the formation of a Rb‐ In‐Se phase on the CIGSe absorber. Co‐evaporation of an interfacial RbInSe2 (RISe) layer between buffer and absorber can also benefit cell performance. A detailed analysis of the chemical interface structures in CdS/RISe/CIGSe layer stacks is performed using hard X‐ray photoelectron spectroscopy (HAXPES). For comparison, stacks without RISe and based on RbF PDT CIGSe absorbers are also studied. When aiming for the direct co‐evaporation of a RISe layer on the CIGSe absorber, the formation of an additional In‐Se phase is found. For the RbF PDT CIGSe absorbers, the study only finds small amounts of Rb and no indication for a RISe layer formation. Examining layer stacks prepared via additional chemical bath deposition (CBD) of CdS reveals a clear impact of the presence of Rb (or of Rb‐containing species) on the CIGSe surface. In these cases, an increase of the induction/coalescence period is found at the beginning of the CBD buffer layer growth process and the formation of Cd─Se bonds; thereafter, a more compact CdS layer growth is observed. A detailed study of the chemical interface structures in CdS/RbInSe2/Cu(In,Ga)Se2 solar cell layer stacks using hard X‐ ray photoelectron spectroscopy is conducted. The RbInSe2 layer is found to be Rb‐deficient and a clear impact of the presence of Rb (species) is observed on the duration of the induction period of the CdS chemical bath deposition process, resulting in the enhanced formation of Cd─Se bonds.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202403685</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Absorbers ; Buffer layers ; chalcopyrite thin‐film solar cells ; Copper ; Copper indium gallium selenides ; Deposition ; Evaporation ; HAXPES ; Photoelectrons ; Photovoltaic cells ; RbF‐PDT ; RbInSe2 ; Selenium ; Solar cells ; Stacks ; Thin films</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (40), p.n/a</ispartof><rights>2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-9374-1083 ; 0000-0001-5822-8399 ; 0000-0001-8581-0691 ; 0000-0001-9168-2032 ; 0000-0002-0820-162X ; 0000-0002-8792-9669 ; 0000-0001-9425-0614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bombsch, Jakob</creatorcontrib><creatorcontrib>Kodalle, Tim</creatorcontrib><creatorcontrib>Garcia‐Diez, Raul</creatorcontrib><creatorcontrib>Hartmann, Claudia</creatorcontrib><creatorcontrib>Félix, Roberto</creatorcontrib><creatorcontrib>Ueda, Shigenori</creatorcontrib><creatorcontrib>Wilks, Regan G.</creatorcontrib><creatorcontrib>Kaufmann, Christian A.</creatorcontrib><creatorcontrib>Bär, Marcus</creatorcontrib><title>Chemical Interface Structures in CdS/RbInSe2/Cu(In,Ga)Se2 Thin‐Film Solar Cell Stacks</title><title>Advanced functional materials</title><description>Performance‐enhancing heavy alkali‐based post‐deposition treatments (PDT) of Cu(In,Ga)Se2 (CIGSe) thin‐film solar cells absorbers often induce the formation of a Rb‐ In‐Se phase on the CIGSe absorber. Co‐evaporation of an interfacial RbInSe2 (RISe) layer between buffer and absorber can also benefit cell performance. A detailed analysis of the chemical interface structures in CdS/RISe/CIGSe layer stacks is performed using hard X‐ray photoelectron spectroscopy (HAXPES). For comparison, stacks without RISe and based on RbF PDT CIGSe absorbers are also studied. When aiming for the direct co‐evaporation of a RISe layer on the CIGSe absorber, the formation of an additional In‐Se phase is found. For the RbF PDT CIGSe absorbers, the study only finds small amounts of Rb and no indication for a RISe layer formation. Examining layer stacks prepared via additional chemical bath deposition (CBD) of CdS reveals a clear impact of the presence of Rb (or of Rb‐containing species) on the CIGSe surface. In these cases, an increase of the induction/coalescence period is found at the beginning of the CBD buffer layer growth process and the formation of Cd─Se bonds; thereafter, a more compact CdS layer growth is observed. A detailed study of the chemical interface structures in CdS/RbInSe2/Cu(In,Ga)Se2 solar cell layer stacks using hard X‐ ray photoelectron spectroscopy is conducted. The RbInSe2 layer is found to be Rb‐deficient and a clear impact of the presence of Rb (species) is observed on the duration of the induction period of the CdS chemical bath deposition process, resulting in the enhanced formation of Cd─Se bonds.</description><subject>Absorbers</subject><subject>Buffer layers</subject><subject>chalcopyrite thin‐film solar cells</subject><subject>Copper</subject><subject>Copper indium gallium selenides</subject><subject>Deposition</subject><subject>Evaporation</subject><subject>HAXPES</subject><subject>Photoelectrons</subject><subject>Photovoltaic cells</subject><subject>RbF‐PDT</subject><subject>RbInSe2</subject><subject>Selenium</subject><subject>Solar cells</subject><subject>Stacks</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kFFLwzAUhYMoOKevPgd8UbBbbpIm3eOobhYmgp3oW0jblHWmmaYtsjd_gr_RX2LHZNyHew-ccw98CF0CGQEhdKyLsh5RQjlhIgqP0AAEiIARGh0fbng7RWdNsyYEpGR8gF7jlamrXFucuNb4UucGp63v8rbzpsGVw3GRjp-zxKWGjuPuOnG3c33TC7xcVe73-2dW2RqnG6s9jo21fVrn7805Oim1bczF_x6il9n9Mn4IFk_zJJ4uAkelDAMGmeZRyWQIZhKGBddRP1RkmZQRJUUWcVFyKUVRMoBJATQConlutBbAy4wN0dX-74fffHamadV603nXV6o-AJzwUIreNdm7viprturDV7X2WwVE7cipHTl1IKemd7PHg2J_mONi1w</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Bombsch, Jakob</creator><creator>Kodalle, Tim</creator><creator>Garcia‐Diez, Raul</creator><creator>Hartmann, Claudia</creator><creator>Félix, Roberto</creator><creator>Ueda, Shigenori</creator><creator>Wilks, Regan G.</creator><creator>Kaufmann, Christian A.</creator><creator>Bär, Marcus</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0000-9374-1083</orcidid><orcidid>https://orcid.org/0000-0001-5822-8399</orcidid><orcidid>https://orcid.org/0000-0001-8581-0691</orcidid><orcidid>https://orcid.org/0000-0001-9168-2032</orcidid><orcidid>https://orcid.org/0000-0002-0820-162X</orcidid><orcidid>https://orcid.org/0000-0002-8792-9669</orcidid><orcidid>https://orcid.org/0000-0001-9425-0614</orcidid></search><sort><creationdate>20241001</creationdate><title>Chemical Interface Structures in CdS/RbInSe2/Cu(In,Ga)Se2 Thin‐Film Solar Cell Stacks</title><author>Bombsch, Jakob ; Kodalle, Tim ; Garcia‐Diez, Raul ; Hartmann, Claudia ; Félix, Roberto ; Ueda, Shigenori ; Wilks, Regan G. ; Kaufmann, Christian A. ; Bär, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n2775-31ba48f3751e955d4a8a8a26bb77820db846f4776df3119d12810a4ceaa614fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorbers</topic><topic>Buffer layers</topic><topic>chalcopyrite thin‐film solar cells</topic><topic>Copper</topic><topic>Copper indium gallium selenides</topic><topic>Deposition</topic><topic>Evaporation</topic><topic>HAXPES</topic><topic>Photoelectrons</topic><topic>Photovoltaic cells</topic><topic>RbF‐PDT</topic><topic>RbInSe2</topic><topic>Selenium</topic><topic>Solar cells</topic><topic>Stacks</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bombsch, Jakob</creatorcontrib><creatorcontrib>Kodalle, Tim</creatorcontrib><creatorcontrib>Garcia‐Diez, Raul</creatorcontrib><creatorcontrib>Hartmann, Claudia</creatorcontrib><creatorcontrib>Félix, Roberto</creatorcontrib><creatorcontrib>Ueda, Shigenori</creatorcontrib><creatorcontrib>Wilks, Regan G.</creatorcontrib><creatorcontrib>Kaufmann, Christian A.</creatorcontrib><creatorcontrib>Bär, Marcus</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Archive</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bombsch, Jakob</au><au>Kodalle, Tim</au><au>Garcia‐Diez, Raul</au><au>Hartmann, Claudia</au><au>Félix, Roberto</au><au>Ueda, Shigenori</au><au>Wilks, Regan G.</au><au>Kaufmann, Christian A.</au><au>Bär, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Interface Structures in CdS/RbInSe2/Cu(In,Ga)Se2 Thin‐Film Solar Cell Stacks</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Performance‐enhancing heavy alkali‐based post‐deposition treatments (PDT) of Cu(In,Ga)Se2 (CIGSe) thin‐film solar cells absorbers often induce the formation of a Rb‐ In‐Se phase on the CIGSe absorber. Co‐evaporation of an interfacial RbInSe2 (RISe) layer between buffer and absorber can also benefit cell performance. A detailed analysis of the chemical interface structures in CdS/RISe/CIGSe layer stacks is performed using hard X‐ray photoelectron spectroscopy (HAXPES). For comparison, stacks without RISe and based on RbF PDT CIGSe absorbers are also studied. When aiming for the direct co‐evaporation of a RISe layer on the CIGSe absorber, the formation of an additional In‐Se phase is found. For the RbF PDT CIGSe absorbers, the study only finds small amounts of Rb and no indication for a RISe layer formation. Examining layer stacks prepared via additional chemical bath deposition (CBD) of CdS reveals a clear impact of the presence of Rb (or of Rb‐containing species) on the CIGSe surface. In these cases, an increase of the induction/coalescence period is found at the beginning of the CBD buffer layer growth process and the formation of Cd─Se bonds; thereafter, a more compact CdS layer growth is observed. A detailed study of the chemical interface structures in CdS/RbInSe2/Cu(In,Ga)Se2 solar cell layer stacks using hard X‐ ray photoelectron spectroscopy is conducted. The RbInSe2 layer is found to be Rb‐deficient and a clear impact of the presence of Rb (species) is observed on the duration of the induction period of the CdS chemical bath deposition process, resulting in the enhanced formation of Cd─Se bonds.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202403685</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0000-9374-1083</orcidid><orcidid>https://orcid.org/0000-0001-5822-8399</orcidid><orcidid>https://orcid.org/0000-0001-8581-0691</orcidid><orcidid>https://orcid.org/0000-0001-9168-2032</orcidid><orcidid>https://orcid.org/0000-0002-0820-162X</orcidid><orcidid>https://orcid.org/0000-0002-8792-9669</orcidid><orcidid>https://orcid.org/0000-0001-9425-0614</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10, Vol.34 (40), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3111404576
source Wiley
subjects Absorbers
Buffer layers
chalcopyrite thin‐film solar cells
Copper
Copper indium gallium selenides
Deposition
Evaporation
HAXPES
Photoelectrons
Photovoltaic cells
RbF‐PDT
RbInSe2
Selenium
Solar cells
Stacks
Thin films
title Chemical Interface Structures in CdS/RbInSe2/Cu(In,Ga)Se2 Thin‐Film Solar Cell Stacks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Interface%20Structures%20in%20CdS/RbInSe2/Cu(In,Ga)Se2%20Thin%E2%80%90Film%20Solar%20Cell%20Stacks&rft.jtitle=Advanced%20functional%20materials&rft.au=Bombsch,%20Jakob&rft.date=2024-10-01&rft.volume=34&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202403685&rft_dat=%3Cproquest_wiley%3E3111404576%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-n2775-31ba48f3751e955d4a8a8a26bb77820db846f4776df3119d12810a4ceaa614fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3111404576&rft_id=info:pmid/&rfr_iscdi=true