Loading…
Chemical Interface Structures in CdS/RbInSe2/Cu(In,Ga)Se2 Thin‐Film Solar Cell Stacks
Performance‐enhancing heavy alkali‐based post‐deposition treatments (PDT) of Cu(In,Ga)Se2 (CIGSe) thin‐film solar cells absorbers often induce the formation of a Rb‐ In‐Se phase on the CIGSe absorber. Co‐evaporation of an interfacial RbInSe2 (RISe) layer between buffer and absorber can also benefit...
Saved in:
Published in: | Advanced functional materials 2024-10, Vol.34 (40), p.n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 40 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Bombsch, Jakob Kodalle, Tim Garcia‐Diez, Raul Hartmann, Claudia Félix, Roberto Ueda, Shigenori Wilks, Regan G. Kaufmann, Christian A. Bär, Marcus |
description | Performance‐enhancing heavy alkali‐based post‐deposition treatments (PDT) of Cu(In,Ga)Se2 (CIGSe) thin‐film solar cells absorbers often induce the formation of a Rb‐ In‐Se phase on the CIGSe absorber. Co‐evaporation of an interfacial RbInSe2 (RISe) layer between buffer and absorber can also benefit cell performance. A detailed analysis of the chemical interface structures in CdS/RISe/CIGSe layer stacks is performed using hard X‐ray photoelectron spectroscopy (HAXPES). For comparison, stacks without RISe and based on RbF PDT CIGSe absorbers are also studied. When aiming for the direct co‐evaporation of a RISe layer on the CIGSe absorber, the formation of an additional In‐Se phase is found. For the RbF PDT CIGSe absorbers, the study only finds small amounts of Rb and no indication for a RISe layer formation. Examining layer stacks prepared via additional chemical bath deposition (CBD) of CdS reveals a clear impact of the presence of Rb (or of Rb‐containing species) on the CIGSe surface. In these cases, an increase of the induction/coalescence period is found at the beginning of the CBD buffer layer growth process and the formation of Cd─Se bonds; thereafter, a more compact CdS layer growth is observed.
A detailed study of the chemical interface structures in CdS/RbInSe2/Cu(In,Ga)Se2 solar cell layer stacks using hard X‐ ray photoelectron spectroscopy is conducted. The RbInSe2 layer is found to be Rb‐deficient and a clear impact of the presence of Rb (species) is observed on the duration of the induction period of the CdS chemical bath deposition process, resulting in the enhanced formation of Cd─Se bonds. |
doi_str_mv | 10.1002/adfm.202403685 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3111404576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111404576</sourcerecordid><originalsourceid>FETCH-LOGICAL-n2775-31ba48f3751e955d4a8a8a26bb77820db846f4776df3119d12810a4ceaa614fb3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKevPgd8UbBbbpIm3eOobhYmgp3oW0jblHWmmaYtsjd_gr_RX2LHZNyHew-ccw98CF0CGQEhdKyLsh5RQjlhIgqP0AAEiIARGh0fbng7RWdNsyYEpGR8gF7jlamrXFucuNb4UucGp63v8rbzpsGVw3GRjp-zxKWGjuPuOnG3c33TC7xcVe73-2dW2RqnG6s9jo21fVrn7805Oim1bczF_x6il9n9Mn4IFk_zJJ4uAkelDAMGmeZRyWQIZhKGBddRP1RkmZQRJUUWcVFyKUVRMoBJATQConlutBbAy4wN0dX-74fffHamadV603nXV6o-AJzwUIreNdm7viprturDV7X2WwVE7cipHTl1IKemd7PHg2J_mONi1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111404576</pqid></control><display><type>article</type><title>Chemical Interface Structures in CdS/RbInSe2/Cu(In,Ga)Se2 Thin‐Film Solar Cell Stacks</title><source>Wiley</source><creator>Bombsch, Jakob ; Kodalle, Tim ; Garcia‐Diez, Raul ; Hartmann, Claudia ; Félix, Roberto ; Ueda, Shigenori ; Wilks, Regan G. ; Kaufmann, Christian A. ; Bär, Marcus</creator><creatorcontrib>Bombsch, Jakob ; Kodalle, Tim ; Garcia‐Diez, Raul ; Hartmann, Claudia ; Félix, Roberto ; Ueda, Shigenori ; Wilks, Regan G. ; Kaufmann, Christian A. ; Bär, Marcus</creatorcontrib><description>Performance‐enhancing heavy alkali‐based post‐deposition treatments (PDT) of Cu(In,Ga)Se2 (CIGSe) thin‐film solar cells absorbers often induce the formation of a Rb‐ In‐Se phase on the CIGSe absorber. Co‐evaporation of an interfacial RbInSe2 (RISe) layer between buffer and absorber can also benefit cell performance. A detailed analysis of the chemical interface structures in CdS/RISe/CIGSe layer stacks is performed using hard X‐ray photoelectron spectroscopy (HAXPES). For comparison, stacks without RISe and based on RbF PDT CIGSe absorbers are also studied. When aiming for the direct co‐evaporation of a RISe layer on the CIGSe absorber, the formation of an additional In‐Se phase is found. For the RbF PDT CIGSe absorbers, the study only finds small amounts of Rb and no indication for a RISe layer formation. Examining layer stacks prepared via additional chemical bath deposition (CBD) of CdS reveals a clear impact of the presence of Rb (or of Rb‐containing species) on the CIGSe surface. In these cases, an increase of the induction/coalescence period is found at the beginning of the CBD buffer layer growth process and the formation of Cd─Se bonds; thereafter, a more compact CdS layer growth is observed.
A detailed study of the chemical interface structures in CdS/RbInSe2/Cu(In,Ga)Se2 solar cell layer stacks using hard X‐ ray photoelectron spectroscopy is conducted. The RbInSe2 layer is found to be Rb‐deficient and a clear impact of the presence of Rb (species) is observed on the duration of the induction period of the CdS chemical bath deposition process, resulting in the enhanced formation of Cd─Se bonds.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202403685</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Absorbers ; Buffer layers ; chalcopyrite thin‐film solar cells ; Copper ; Copper indium gallium selenides ; Deposition ; Evaporation ; HAXPES ; Photoelectrons ; Photovoltaic cells ; RbF‐PDT ; RbInSe2 ; Selenium ; Solar cells ; Stacks ; Thin films</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (40), p.n/a</ispartof><rights>2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-9374-1083 ; 0000-0001-5822-8399 ; 0000-0001-8581-0691 ; 0000-0001-9168-2032 ; 0000-0002-0820-162X ; 0000-0002-8792-9669 ; 0000-0001-9425-0614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bombsch, Jakob</creatorcontrib><creatorcontrib>Kodalle, Tim</creatorcontrib><creatorcontrib>Garcia‐Diez, Raul</creatorcontrib><creatorcontrib>Hartmann, Claudia</creatorcontrib><creatorcontrib>Félix, Roberto</creatorcontrib><creatorcontrib>Ueda, Shigenori</creatorcontrib><creatorcontrib>Wilks, Regan G.</creatorcontrib><creatorcontrib>Kaufmann, Christian A.</creatorcontrib><creatorcontrib>Bär, Marcus</creatorcontrib><title>Chemical Interface Structures in CdS/RbInSe2/Cu(In,Ga)Se2 Thin‐Film Solar Cell Stacks</title><title>Advanced functional materials</title><description>Performance‐enhancing heavy alkali‐based post‐deposition treatments (PDT) of Cu(In,Ga)Se2 (CIGSe) thin‐film solar cells absorbers often induce the formation of a Rb‐ In‐Se phase on the CIGSe absorber. Co‐evaporation of an interfacial RbInSe2 (RISe) layer between buffer and absorber can also benefit cell performance. A detailed analysis of the chemical interface structures in CdS/RISe/CIGSe layer stacks is performed using hard X‐ray photoelectron spectroscopy (HAXPES). For comparison, stacks without RISe and based on RbF PDT CIGSe absorbers are also studied. When aiming for the direct co‐evaporation of a RISe layer on the CIGSe absorber, the formation of an additional In‐Se phase is found. For the RbF PDT CIGSe absorbers, the study only finds small amounts of Rb and no indication for a RISe layer formation. Examining layer stacks prepared via additional chemical bath deposition (CBD) of CdS reveals a clear impact of the presence of Rb (or of Rb‐containing species) on the CIGSe surface. In these cases, an increase of the induction/coalescence period is found at the beginning of the CBD buffer layer growth process and the formation of Cd─Se bonds; thereafter, a more compact CdS layer growth is observed.
A detailed study of the chemical interface structures in CdS/RbInSe2/Cu(In,Ga)Se2 solar cell layer stacks using hard X‐ ray photoelectron spectroscopy is conducted. The RbInSe2 layer is found to be Rb‐deficient and a clear impact of the presence of Rb (species) is observed on the duration of the induction period of the CdS chemical bath deposition process, resulting in the enhanced formation of Cd─Se bonds.</description><subject>Absorbers</subject><subject>Buffer layers</subject><subject>chalcopyrite thin‐film solar cells</subject><subject>Copper</subject><subject>Copper indium gallium selenides</subject><subject>Deposition</subject><subject>Evaporation</subject><subject>HAXPES</subject><subject>Photoelectrons</subject><subject>Photovoltaic cells</subject><subject>RbF‐PDT</subject><subject>RbInSe2</subject><subject>Selenium</subject><subject>Solar cells</subject><subject>Stacks</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kFFLwzAUhYMoOKevPgd8UbBbbpIm3eOobhYmgp3oW0jblHWmmaYtsjd_gr_RX2LHZNyHew-ccw98CF0CGQEhdKyLsh5RQjlhIgqP0AAEiIARGh0fbng7RWdNsyYEpGR8gF7jlamrXFucuNb4UucGp63v8rbzpsGVw3GRjp-zxKWGjuPuOnG3c33TC7xcVe73-2dW2RqnG6s9jo21fVrn7805Oim1bczF_x6il9n9Mn4IFk_zJJ4uAkelDAMGmeZRyWQIZhKGBddRP1RkmZQRJUUWcVFyKUVRMoBJATQConlutBbAy4wN0dX-74fffHamadV603nXV6o-AJzwUIreNdm7viprturDV7X2WwVE7cipHTl1IKemd7PHg2J_mONi1w</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Bombsch, Jakob</creator><creator>Kodalle, Tim</creator><creator>Garcia‐Diez, Raul</creator><creator>Hartmann, Claudia</creator><creator>Félix, Roberto</creator><creator>Ueda, Shigenori</creator><creator>Wilks, Regan G.</creator><creator>Kaufmann, Christian A.</creator><creator>Bär, Marcus</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0000-9374-1083</orcidid><orcidid>https://orcid.org/0000-0001-5822-8399</orcidid><orcidid>https://orcid.org/0000-0001-8581-0691</orcidid><orcidid>https://orcid.org/0000-0001-9168-2032</orcidid><orcidid>https://orcid.org/0000-0002-0820-162X</orcidid><orcidid>https://orcid.org/0000-0002-8792-9669</orcidid><orcidid>https://orcid.org/0000-0001-9425-0614</orcidid></search><sort><creationdate>20241001</creationdate><title>Chemical Interface Structures in CdS/RbInSe2/Cu(In,Ga)Se2 Thin‐Film Solar Cell Stacks</title><author>Bombsch, Jakob ; Kodalle, Tim ; Garcia‐Diez, Raul ; Hartmann, Claudia ; Félix, Roberto ; Ueda, Shigenori ; Wilks, Regan G. ; Kaufmann, Christian A. ; Bär, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n2775-31ba48f3751e955d4a8a8a26bb77820db846f4776df3119d12810a4ceaa614fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorbers</topic><topic>Buffer layers</topic><topic>chalcopyrite thin‐film solar cells</topic><topic>Copper</topic><topic>Copper indium gallium selenides</topic><topic>Deposition</topic><topic>Evaporation</topic><topic>HAXPES</topic><topic>Photoelectrons</topic><topic>Photovoltaic cells</topic><topic>RbF‐PDT</topic><topic>RbInSe2</topic><topic>Selenium</topic><topic>Solar cells</topic><topic>Stacks</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bombsch, Jakob</creatorcontrib><creatorcontrib>Kodalle, Tim</creatorcontrib><creatorcontrib>Garcia‐Diez, Raul</creatorcontrib><creatorcontrib>Hartmann, Claudia</creatorcontrib><creatorcontrib>Félix, Roberto</creatorcontrib><creatorcontrib>Ueda, Shigenori</creatorcontrib><creatorcontrib>Wilks, Regan G.</creatorcontrib><creatorcontrib>Kaufmann, Christian A.</creatorcontrib><creatorcontrib>Bär, Marcus</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Archive</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bombsch, Jakob</au><au>Kodalle, Tim</au><au>Garcia‐Diez, Raul</au><au>Hartmann, Claudia</au><au>Félix, Roberto</au><au>Ueda, Shigenori</au><au>Wilks, Regan G.</au><au>Kaufmann, Christian A.</au><au>Bär, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Interface Structures in CdS/RbInSe2/Cu(In,Ga)Se2 Thin‐Film Solar Cell Stacks</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Performance‐enhancing heavy alkali‐based post‐deposition treatments (PDT) of Cu(In,Ga)Se2 (CIGSe) thin‐film solar cells absorbers often induce the formation of a Rb‐ In‐Se phase on the CIGSe absorber. Co‐evaporation of an interfacial RbInSe2 (RISe) layer between buffer and absorber can also benefit cell performance. A detailed analysis of the chemical interface structures in CdS/RISe/CIGSe layer stacks is performed using hard X‐ray photoelectron spectroscopy (HAXPES). For comparison, stacks without RISe and based on RbF PDT CIGSe absorbers are also studied. When aiming for the direct co‐evaporation of a RISe layer on the CIGSe absorber, the formation of an additional In‐Se phase is found. For the RbF PDT CIGSe absorbers, the study only finds small amounts of Rb and no indication for a RISe layer formation. Examining layer stacks prepared via additional chemical bath deposition (CBD) of CdS reveals a clear impact of the presence of Rb (or of Rb‐containing species) on the CIGSe surface. In these cases, an increase of the induction/coalescence period is found at the beginning of the CBD buffer layer growth process and the formation of Cd─Se bonds; thereafter, a more compact CdS layer growth is observed.
A detailed study of the chemical interface structures in CdS/RbInSe2/Cu(In,Ga)Se2 solar cell layer stacks using hard X‐ ray photoelectron spectroscopy is conducted. The RbInSe2 layer is found to be Rb‐deficient and a clear impact of the presence of Rb (species) is observed on the duration of the induction period of the CdS chemical bath deposition process, resulting in the enhanced formation of Cd─Se bonds.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202403685</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0000-9374-1083</orcidid><orcidid>https://orcid.org/0000-0001-5822-8399</orcidid><orcidid>https://orcid.org/0000-0001-8581-0691</orcidid><orcidid>https://orcid.org/0000-0001-9168-2032</orcidid><orcidid>https://orcid.org/0000-0002-0820-162X</orcidid><orcidid>https://orcid.org/0000-0002-8792-9669</orcidid><orcidid>https://orcid.org/0000-0001-9425-0614</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-10, Vol.34 (40), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3111404576 |
source | Wiley |
subjects | Absorbers Buffer layers chalcopyrite thin‐film solar cells Copper Copper indium gallium selenides Deposition Evaporation HAXPES Photoelectrons Photovoltaic cells RbF‐PDT RbInSe2 Selenium Solar cells Stacks Thin films |
title | Chemical Interface Structures in CdS/RbInSe2/Cu(In,Ga)Se2 Thin‐Film Solar Cell Stacks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Interface%20Structures%20in%20CdS/RbInSe2/Cu(In,Ga)Se2%20Thin%E2%80%90Film%20Solar%20Cell%20Stacks&rft.jtitle=Advanced%20functional%20materials&rft.au=Bombsch,%20Jakob&rft.date=2024-10-01&rft.volume=34&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202403685&rft_dat=%3Cproquest_wiley%3E3111404576%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-n2775-31ba48f3751e955d4a8a8a26bb77820db846f4776df3119d12810a4ceaa614fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3111404576&rft_id=info:pmid/&rfr_iscdi=true |