Loading…
Quantum Entanglement Distribution via Uplink Satellite Channels
Significant work has been done to develop quantum satellites, which generate entangled pairs in space and distribute them to ground stations separated some distance away. The reverse uplink case, where pairs are generated on the ground and swapped on the satellite using an optical Bell-measurement,...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Srikara, S Hudson, Leone Solnstev, Alexander S Devitt, Simon J |
description | Significant work has been done to develop quantum satellites, which generate entangled pairs in space and distribute them to ground stations separated some distance away. The reverse uplink case, where pairs are generated on the ground and swapped on the satellite using an optical Bell-measurement, has not been seriously considered due to a prevailing assumption that it is practically infeasible. In this letter, we illustrate the feasibility of performing Discrete Variable photonic Bell-measurements in space by conducting a detailed numerical analysis to estimate the channel efficiency and attainable pair fidelity for various satellite-station configurations. Our model accounts for a wide range of physical effects such as atmospheric effects, stray photons, and mode mismatch. Our findings show promise toward the feasibility of photonic Bell-measurements in space, which motivates future research towards large-scale Satellite-based uplink entanglement distribution. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3111725377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111725377</sourcerecordid><originalsourceid>FETCH-proquest_journals_31117253773</originalsourceid><addsrcrecordid>eNqNjbEKwjAUAIMgWLT_EHAuNIk1bg614irqXFJ4amr6UpMXv98OfoDTDXdwM5ZJpUSx20i5YHmMfVmWcqtlVamM7c_JIKWBN0gGHw4GQOIHGynYLpH1yD_W8NvoLL74xRA4Zwl4_TSI4OKKze_GRch_XLL1sbnWp2IM_p0gUtv7FHBSrRJCTFeltfqv-gI5qTkh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111725377</pqid></control><display><type>article</type><title>Quantum Entanglement Distribution via Uplink Satellite Channels</title><source>Publicly Available Content Database</source><creator>Srikara, S ; Hudson, Leone ; Solnstev, Alexander S ; Devitt, Simon J</creator><creatorcontrib>Srikara, S ; Hudson, Leone ; Solnstev, Alexander S ; Devitt, Simon J</creatorcontrib><description>Significant work has been done to develop quantum satellites, which generate entangled pairs in space and distribute them to ground stations separated some distance away. The reverse uplink case, where pairs are generated on the ground and swapped on the satellite using an optical Bell-measurement, has not been seriously considered due to a prevailing assumption that it is practically infeasible. In this letter, we illustrate the feasibility of performing Discrete Variable photonic Bell-measurements in space by conducting a detailed numerical analysis to estimate the channel efficiency and attainable pair fidelity for various satellite-station configurations. Our model accounts for a wide range of physical effects such as atmospheric effects, stray photons, and mode mismatch. Our findings show promise toward the feasibility of photonic Bell-measurements in space, which motivates future research towards large-scale Satellite-based uplink entanglement distribution.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atmospheric effects ; Configuration management ; Feasibility studies ; Numerical analysis ; Photonics ; Quantum entanglement ; Satellite communications ; Uplinking</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3111725377?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Srikara, S</creatorcontrib><creatorcontrib>Hudson, Leone</creatorcontrib><creatorcontrib>Solnstev, Alexander S</creatorcontrib><creatorcontrib>Devitt, Simon J</creatorcontrib><title>Quantum Entanglement Distribution via Uplink Satellite Channels</title><title>arXiv.org</title><description>Significant work has been done to develop quantum satellites, which generate entangled pairs in space and distribute them to ground stations separated some distance away. The reverse uplink case, where pairs are generated on the ground and swapped on the satellite using an optical Bell-measurement, has not been seriously considered due to a prevailing assumption that it is practically infeasible. In this letter, we illustrate the feasibility of performing Discrete Variable photonic Bell-measurements in space by conducting a detailed numerical analysis to estimate the channel efficiency and attainable pair fidelity for various satellite-station configurations. Our model accounts for a wide range of physical effects such as atmospheric effects, stray photons, and mode mismatch. Our findings show promise toward the feasibility of photonic Bell-measurements in space, which motivates future research towards large-scale Satellite-based uplink entanglement distribution.</description><subject>Atmospheric effects</subject><subject>Configuration management</subject><subject>Feasibility studies</subject><subject>Numerical analysis</subject><subject>Photonics</subject><subject>Quantum entanglement</subject><subject>Satellite communications</subject><subject>Uplinking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjbEKwjAUAIMgWLT_EHAuNIk1bg614irqXFJ4amr6UpMXv98OfoDTDXdwM5ZJpUSx20i5YHmMfVmWcqtlVamM7c_JIKWBN0gGHw4GQOIHGynYLpH1yD_W8NvoLL74xRA4Zwl4_TSI4OKKze_GRch_XLL1sbnWp2IM_p0gUtv7FHBSrRJCTFeltfqv-gI5qTkh</recordid><startdate>20240930</startdate><enddate>20240930</enddate><creator>Srikara, S</creator><creator>Hudson, Leone</creator><creator>Solnstev, Alexander S</creator><creator>Devitt, Simon J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240930</creationdate><title>Quantum Entanglement Distribution via Uplink Satellite Channels</title><author>Srikara, S ; Hudson, Leone ; Solnstev, Alexander S ; Devitt, Simon J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31117253773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric effects</topic><topic>Configuration management</topic><topic>Feasibility studies</topic><topic>Numerical analysis</topic><topic>Photonics</topic><topic>Quantum entanglement</topic><topic>Satellite communications</topic><topic>Uplinking</topic><toplevel>online_resources</toplevel><creatorcontrib>Srikara, S</creatorcontrib><creatorcontrib>Hudson, Leone</creatorcontrib><creatorcontrib>Solnstev, Alexander S</creatorcontrib><creatorcontrib>Devitt, Simon J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srikara, S</au><au>Hudson, Leone</au><au>Solnstev, Alexander S</au><au>Devitt, Simon J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum Entanglement Distribution via Uplink Satellite Channels</atitle><jtitle>arXiv.org</jtitle><date>2024-09-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Significant work has been done to develop quantum satellites, which generate entangled pairs in space and distribute them to ground stations separated some distance away. The reverse uplink case, where pairs are generated on the ground and swapped on the satellite using an optical Bell-measurement, has not been seriously considered due to a prevailing assumption that it is practically infeasible. In this letter, we illustrate the feasibility of performing Discrete Variable photonic Bell-measurements in space by conducting a detailed numerical analysis to estimate the channel efficiency and attainable pair fidelity for various satellite-station configurations. Our model accounts for a wide range of physical effects such as atmospheric effects, stray photons, and mode mismatch. Our findings show promise toward the feasibility of photonic Bell-measurements in space, which motivates future research towards large-scale Satellite-based uplink entanglement distribution.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3111725377 |
source | Publicly Available Content Database |
subjects | Atmospheric effects Configuration management Feasibility studies Numerical analysis Photonics Quantum entanglement Satellite communications Uplinking |
title | Quantum Entanglement Distribution via Uplink Satellite Channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum%20Entanglement%20Distribution%20via%20Uplink%20Satellite%20Channels&rft.jtitle=arXiv.org&rft.au=Srikara,%20S&rft.date=2024-09-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3111725377%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31117253773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3111725377&rft_id=info:pmid/&rfr_iscdi=true |