Loading…

Unravelling compound risks of hydrological extremes in a changing climate: Typology, methods and futures

We have witnessed and experienced increasing compound extreme events resulting from simultaneous or sequential occurrence of multiple events in a changing climate. In addition to a growing demand for a clearer explanation of compound risks from a hydrological perspective, there has been a lack of at...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Authors: Chun, Kwok P, Octavianti, Thanti, Papacharalampous, Georgia, Tyralis, Hristos, Sutanto, Samuel J, Terskii, Pavel, Mazzoglio, Paola, Treppiedi, Dario, Rivera, Juan, Dogulu, Nilay, Adeyemi Olusola, Dieppois, Bastien, Dembélé, Moctar, Moulds, Simon, Cheng, Li, Morales-Marin, Luis Alejandro, Macdonald, Neil, Toundji, Olivier Amoussou, Yonaba, Roland, Salomon Obahoundje, Massei, Nicolas, Hannah, David M, Sivarama Krishna Reddy Chidepudi, Byman Hamududu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chun, Kwok P
Octavianti, Thanti
Papacharalampous, Georgia
Tyralis, Hristos
Sutanto, Samuel J
Terskii, Pavel
Mazzoglio, Paola
Treppiedi, Dario
Rivera, Juan
Dogulu, Nilay
Adeyemi Olusola
Dieppois, Bastien
Dembélé, Moctar
Moulds, Simon
Cheng, Li
Morales-Marin, Luis Alejandro
Macdonald, Neil
Toundji, Olivier Amoussou
Yonaba, Roland
Salomon Obahoundje
Massei, Nicolas
Hannah, David M
Sivarama Krishna Reddy Chidepudi
Byman Hamududu
description We have witnessed and experienced increasing compound extreme events resulting from simultaneous or sequential occurrence of multiple events in a changing climate. In addition to a growing demand for a clearer explanation of compound risks from a hydrological perspective, there has been a lack of attention paid to socioeconomic factors driving and impacted by these risks. Through a critical review and co-production approaches, we identified four types of compound hydrological events based on autocorrelated, multivariate, and spatiotemporal patterns. A framework to quantify compound risks based on conditional probability is offered, including an argument on the potential use of generative Artificial Intelligence (AI) algorithms for identifying emerging trends and patterns for climate change. Insights for practices are discussed, highlighting the implications for disaster risk reduction and knowledge co-production. Our argument centres on the importance of meaningfully considering the socioeconomic contexts in which compound risks may have impacts, and the need for interdisciplinary collaboration to effectively translate climate science to climate actions.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3111726063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111726063</sourcerecordid><originalsourceid>FETCH-proquest_journals_31117260633</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRYMgKNo7DLi10CZaxa0oHqCuS2inbTRNaiYRe3ureABXb_HffxM250Kk8X7D-YxFRLckSXi249utmLP2apx8otbKNFDarrfBVOAU3QlsDe1QOatto0qpAV_eYYcEyoCEspWm-b606qTHA-RD_3GHNXToW1sRyLFVBx8c0pJNa6kJox8XbHU-5cdL3Dv7CEi-uNngzDgVIk3THc-STIj_rDfP30h8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111726063</pqid></control><display><type>article</type><title>Unravelling compound risks of hydrological extremes in a changing climate: Typology, methods and futures</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Chun, Kwok P ; Octavianti, Thanti ; Papacharalampous, Georgia ; Tyralis, Hristos ; Sutanto, Samuel J ; Terskii, Pavel ; Mazzoglio, Paola ; Treppiedi, Dario ; Rivera, Juan ; Dogulu, Nilay ; Adeyemi Olusola ; Dieppois, Bastien ; Dembélé, Moctar ; Moulds, Simon ; Cheng, Li ; Morales-Marin, Luis Alejandro ; Macdonald, Neil ; Toundji, Olivier Amoussou ; Yonaba, Roland ; Salomon Obahoundje ; Massei, Nicolas ; Hannah, David M ; Sivarama Krishna Reddy Chidepudi ; Byman Hamududu</creator><creatorcontrib>Chun, Kwok P ; Octavianti, Thanti ; Papacharalampous, Georgia ; Tyralis, Hristos ; Sutanto, Samuel J ; Terskii, Pavel ; Mazzoglio, Paola ; Treppiedi, Dario ; Rivera, Juan ; Dogulu, Nilay ; Adeyemi Olusola ; Dieppois, Bastien ; Dembélé, Moctar ; Moulds, Simon ; Cheng, Li ; Morales-Marin, Luis Alejandro ; Macdonald, Neil ; Toundji, Olivier Amoussou ; Yonaba, Roland ; Salomon Obahoundje ; Massei, Nicolas ; Hannah, David M ; Sivarama Krishna Reddy Chidepudi ; Byman Hamududu</creatorcontrib><description>We have witnessed and experienced increasing compound extreme events resulting from simultaneous or sequential occurrence of multiple events in a changing climate. In addition to a growing demand for a clearer explanation of compound risks from a hydrological perspective, there has been a lack of attention paid to socioeconomic factors driving and impacted by these risks. Through a critical review and co-production approaches, we identified four types of compound hydrological events based on autocorrelated, multivariate, and spatiotemporal patterns. A framework to quantify compound risks based on conditional probability is offered, including an argument on the potential use of generative Artificial Intelligence (AI) algorithms for identifying emerging trends and patterns for climate change. Insights for practices are discussed, highlighting the implications for disaster risk reduction and knowledge co-production. Our argument centres on the importance of meaningfully considering the socioeconomic contexts in which compound risks may have impacts, and the need for interdisciplinary collaboration to effectively translate climate science to climate actions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial intelligence ; Climate action ; Climate change ; Climate science ; Conditional probability ; Disaster management ; Disaster risk ; Emergency preparedness ; Extreme values ; Generative artificial intelligence ; Hydrology ; Risk management ; Risk reduction ; Socioeconomic factors ; Socioeconomics</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3111726063?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Chun, Kwok P</creatorcontrib><creatorcontrib>Octavianti, Thanti</creatorcontrib><creatorcontrib>Papacharalampous, Georgia</creatorcontrib><creatorcontrib>Tyralis, Hristos</creatorcontrib><creatorcontrib>Sutanto, Samuel J</creatorcontrib><creatorcontrib>Terskii, Pavel</creatorcontrib><creatorcontrib>Mazzoglio, Paola</creatorcontrib><creatorcontrib>Treppiedi, Dario</creatorcontrib><creatorcontrib>Rivera, Juan</creatorcontrib><creatorcontrib>Dogulu, Nilay</creatorcontrib><creatorcontrib>Adeyemi Olusola</creatorcontrib><creatorcontrib>Dieppois, Bastien</creatorcontrib><creatorcontrib>Dembélé, Moctar</creatorcontrib><creatorcontrib>Moulds, Simon</creatorcontrib><creatorcontrib>Cheng, Li</creatorcontrib><creatorcontrib>Morales-Marin, Luis Alejandro</creatorcontrib><creatorcontrib>Macdonald, Neil</creatorcontrib><creatorcontrib>Toundji, Olivier Amoussou</creatorcontrib><creatorcontrib>Yonaba, Roland</creatorcontrib><creatorcontrib>Salomon Obahoundje</creatorcontrib><creatorcontrib>Massei, Nicolas</creatorcontrib><creatorcontrib>Hannah, David M</creatorcontrib><creatorcontrib>Sivarama Krishna Reddy Chidepudi</creatorcontrib><creatorcontrib>Byman Hamududu</creatorcontrib><title>Unravelling compound risks of hydrological extremes in a changing climate: Typology, methods and futures</title><title>arXiv.org</title><description>We have witnessed and experienced increasing compound extreme events resulting from simultaneous or sequential occurrence of multiple events in a changing climate. In addition to a growing demand for a clearer explanation of compound risks from a hydrological perspective, there has been a lack of attention paid to socioeconomic factors driving and impacted by these risks. Through a critical review and co-production approaches, we identified four types of compound hydrological events based on autocorrelated, multivariate, and spatiotemporal patterns. A framework to quantify compound risks based on conditional probability is offered, including an argument on the potential use of generative Artificial Intelligence (AI) algorithms for identifying emerging trends and patterns for climate change. Insights for practices are discussed, highlighting the implications for disaster risk reduction and knowledge co-production. Our argument centres on the importance of meaningfully considering the socioeconomic contexts in which compound risks may have impacts, and the need for interdisciplinary collaboration to effectively translate climate science to climate actions.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Climate action</subject><subject>Climate change</subject><subject>Climate science</subject><subject>Conditional probability</subject><subject>Disaster management</subject><subject>Disaster risk</subject><subject>Emergency preparedness</subject><subject>Extreme values</subject><subject>Generative artificial intelligence</subject><subject>Hydrology</subject><subject>Risk management</subject><subject>Risk reduction</subject><subject>Socioeconomic factors</subject><subject>Socioeconomics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEEKwjAQRYMgKNo7DLi10CZaxa0oHqCuS2inbTRNaiYRe3ureABXb_HffxM250Kk8X7D-YxFRLckSXi249utmLP2apx8otbKNFDarrfBVOAU3QlsDe1QOatto0qpAV_eYYcEyoCEspWm-b606qTHA-RD_3GHNXToW1sRyLFVBx8c0pJNa6kJox8XbHU-5cdL3Dv7CEi-uNngzDgVIk3THc-STIj_rDfP30h8</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Chun, Kwok P</creator><creator>Octavianti, Thanti</creator><creator>Papacharalampous, Georgia</creator><creator>Tyralis, Hristos</creator><creator>Sutanto, Samuel J</creator><creator>Terskii, Pavel</creator><creator>Mazzoglio, Paola</creator><creator>Treppiedi, Dario</creator><creator>Rivera, Juan</creator><creator>Dogulu, Nilay</creator><creator>Adeyemi Olusola</creator><creator>Dieppois, Bastien</creator><creator>Dembélé, Moctar</creator><creator>Moulds, Simon</creator><creator>Cheng, Li</creator><creator>Morales-Marin, Luis Alejandro</creator><creator>Macdonald, Neil</creator><creator>Toundji, Olivier Amoussou</creator><creator>Yonaba, Roland</creator><creator>Salomon Obahoundje</creator><creator>Massei, Nicolas</creator><creator>Hannah, David M</creator><creator>Sivarama Krishna Reddy Chidepudi</creator><creator>Byman Hamududu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240920</creationdate><title>Unravelling compound risks of hydrological extremes in a changing climate: Typology, methods and futures</title><author>Chun, Kwok P ; Octavianti, Thanti ; Papacharalampous, Georgia ; Tyralis, Hristos ; Sutanto, Samuel J ; Terskii, Pavel ; Mazzoglio, Paola ; Treppiedi, Dario ; Rivera, Juan ; Dogulu, Nilay ; Adeyemi Olusola ; Dieppois, Bastien ; Dembélé, Moctar ; Moulds, Simon ; Cheng, Li ; Morales-Marin, Luis Alejandro ; Macdonald, Neil ; Toundji, Olivier Amoussou ; Yonaba, Roland ; Salomon Obahoundje ; Massei, Nicolas ; Hannah, David M ; Sivarama Krishna Reddy Chidepudi ; Byman Hamududu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31117260633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Climate action</topic><topic>Climate change</topic><topic>Climate science</topic><topic>Conditional probability</topic><topic>Disaster management</topic><topic>Disaster risk</topic><topic>Emergency preparedness</topic><topic>Extreme values</topic><topic>Generative artificial intelligence</topic><topic>Hydrology</topic><topic>Risk management</topic><topic>Risk reduction</topic><topic>Socioeconomic factors</topic><topic>Socioeconomics</topic><toplevel>online_resources</toplevel><creatorcontrib>Chun, Kwok P</creatorcontrib><creatorcontrib>Octavianti, Thanti</creatorcontrib><creatorcontrib>Papacharalampous, Georgia</creatorcontrib><creatorcontrib>Tyralis, Hristos</creatorcontrib><creatorcontrib>Sutanto, Samuel J</creatorcontrib><creatorcontrib>Terskii, Pavel</creatorcontrib><creatorcontrib>Mazzoglio, Paola</creatorcontrib><creatorcontrib>Treppiedi, Dario</creatorcontrib><creatorcontrib>Rivera, Juan</creatorcontrib><creatorcontrib>Dogulu, Nilay</creatorcontrib><creatorcontrib>Adeyemi Olusola</creatorcontrib><creatorcontrib>Dieppois, Bastien</creatorcontrib><creatorcontrib>Dembélé, Moctar</creatorcontrib><creatorcontrib>Moulds, Simon</creatorcontrib><creatorcontrib>Cheng, Li</creatorcontrib><creatorcontrib>Morales-Marin, Luis Alejandro</creatorcontrib><creatorcontrib>Macdonald, Neil</creatorcontrib><creatorcontrib>Toundji, Olivier Amoussou</creatorcontrib><creatorcontrib>Yonaba, Roland</creatorcontrib><creatorcontrib>Salomon Obahoundje</creatorcontrib><creatorcontrib>Massei, Nicolas</creatorcontrib><creatorcontrib>Hannah, David M</creatorcontrib><creatorcontrib>Sivarama Krishna Reddy Chidepudi</creatorcontrib><creatorcontrib>Byman Hamududu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun, Kwok P</au><au>Octavianti, Thanti</au><au>Papacharalampous, Georgia</au><au>Tyralis, Hristos</au><au>Sutanto, Samuel J</au><au>Terskii, Pavel</au><au>Mazzoglio, Paola</au><au>Treppiedi, Dario</au><au>Rivera, Juan</au><au>Dogulu, Nilay</au><au>Adeyemi Olusola</au><au>Dieppois, Bastien</au><au>Dembélé, Moctar</au><au>Moulds, Simon</au><au>Cheng, Li</au><au>Morales-Marin, Luis Alejandro</au><au>Macdonald, Neil</au><au>Toundji, Olivier Amoussou</au><au>Yonaba, Roland</au><au>Salomon Obahoundje</au><au>Massei, Nicolas</au><au>Hannah, David M</au><au>Sivarama Krishna Reddy Chidepudi</au><au>Byman Hamududu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unravelling compound risks of hydrological extremes in a changing climate: Typology, methods and futures</atitle><jtitle>arXiv.org</jtitle><date>2024-09-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We have witnessed and experienced increasing compound extreme events resulting from simultaneous or sequential occurrence of multiple events in a changing climate. In addition to a growing demand for a clearer explanation of compound risks from a hydrological perspective, there has been a lack of attention paid to socioeconomic factors driving and impacted by these risks. Through a critical review and co-production approaches, we identified four types of compound hydrological events based on autocorrelated, multivariate, and spatiotemporal patterns. A framework to quantify compound risks based on conditional probability is offered, including an argument on the potential use of generative Artificial Intelligence (AI) algorithms for identifying emerging trends and patterns for climate change. Insights for practices are discussed, highlighting the implications for disaster risk reduction and knowledge co-production. Our argument centres on the importance of meaningfully considering the socioeconomic contexts in which compound risks may have impacts, and the need for interdisciplinary collaboration to effectively translate climate science to climate actions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3111726063
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Artificial intelligence
Climate action
Climate change
Climate science
Conditional probability
Disaster management
Disaster risk
Emergency preparedness
Extreme values
Generative artificial intelligence
Hydrology
Risk management
Risk reduction
Socioeconomic factors
Socioeconomics
title Unravelling compound risks of hydrological extremes in a changing climate: Typology, methods and futures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A17%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unravelling%20compound%20risks%20of%20hydrological%20extremes%20in%20a%20changing%20climate:%20Typology,%20methods%20and%20futures&rft.jtitle=arXiv.org&rft.au=Chun,%20Kwok%20P&rft.date=2024-09-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3111726063%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31117260633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3111726063&rft_id=info:pmid/&rfr_iscdi=true