Loading…

Steering Prediction via a Multi-Sensor System for Autonomous Racing

Autonomous racing has rapidly gained research attention. Traditionally, racing cars rely on 2D LiDAR as their primary visual system. In this work, we explore the integration of an event camera with the existing system to provide enhanced temporal information. Our goal is to fuse the 2D LiDAR data wi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Authors: Zhou, Zhuyun, Wu, Zongwei, Bolli, Florian, Boutteau, Rémi, Yang, Fan, Timofte, Radu, Ginhac, Dominique, Delbruck, Tobi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhou, Zhuyun
Wu, Zongwei
Bolli, Florian
Boutteau, Rémi
Yang, Fan
Timofte, Radu
Ginhac, Dominique
Delbruck, Tobi
description Autonomous racing has rapidly gained research attention. Traditionally, racing cars rely on 2D LiDAR as their primary visual system. In this work, we explore the integration of an event camera with the existing system to provide enhanced temporal information. Our goal is to fuse the 2D LiDAR data with event data in an end-to-end learning framework for steering prediction, which is crucial for autonomous racing. To the best of our knowledge, this is the first study addressing this challenging research topic. We start by creating a multisensor dataset specifically for steering prediction. Using this dataset, we establish a benchmark by evaluating various SOTA fusion methods. Our observations reveal that existing methods often incur substantial computational costs. To address this, we apply low-rank techniques to propose a novel, efficient, and effective fusion design. We introduce a new fusion learning policy to guide the fusion process, enhancing robustness against misalignment. Our fusion architecture provides better steering prediction than LiDAR alone, significantly reducing the RMSE from 7.72 to 1.28. Compared to the second-best fusion method, our work represents only 11% of the learnable parameters while achieving better accuracy. The source code, dataset, and benchmark will be released to promote future research.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3111726774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111726774</sourcerecordid><originalsourceid>FETCH-proquest_journals_31117267743</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwDi5JTS3KzEtXCChKTclMLsnMz1Moy0xUSFTwLc0pydQNTs0rzi9SCK4sLknNVUgDMh1LS_Lz8nPzS4sVghKTgVp5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCre2NDQ0BxoubmJMXGqAO9MOhU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111726774</pqid></control><display><type>article</type><title>Steering Prediction via a Multi-Sensor System for Autonomous Racing</title><source>Publicly Available Content Database</source><creator>Zhou, Zhuyun ; Wu, Zongwei ; Bolli, Florian ; Boutteau, Rémi ; Yang, Fan ; Timofte, Radu ; Ginhac, Dominique ; Delbruck, Tobi</creator><creatorcontrib>Zhou, Zhuyun ; Wu, Zongwei ; Bolli, Florian ; Boutteau, Rémi ; Yang, Fan ; Timofte, Radu ; Ginhac, Dominique ; Delbruck, Tobi</creatorcontrib><description>Autonomous racing has rapidly gained research attention. Traditionally, racing cars rely on 2D LiDAR as their primary visual system. In this work, we explore the integration of an event camera with the existing system to provide enhanced temporal information. Our goal is to fuse the 2D LiDAR data with event data in an end-to-end learning framework for steering prediction, which is crucial for autonomous racing. To the best of our knowledge, this is the first study addressing this challenging research topic. We start by creating a multisensor dataset specifically for steering prediction. Using this dataset, we establish a benchmark by evaluating various SOTA fusion methods. Our observations reveal that existing methods often incur substantial computational costs. To address this, we apply low-rank techniques to propose a novel, efficient, and effective fusion design. We introduce a new fusion learning policy to guide the fusion process, enhancing robustness against misalignment. Our fusion architecture provides better steering prediction than LiDAR alone, significantly reducing the RMSE from 7.72 to 1.28. Compared to the second-best fusion method, our work represents only 11% of the learnable parameters while achieving better accuracy. The source code, dataset, and benchmark will be released to promote future research.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Datasets ; Learning ; Lidar ; Misalignment ; Race cars ; Source code ; Steering</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3111726774?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhou, Zhuyun</creatorcontrib><creatorcontrib>Wu, Zongwei</creatorcontrib><creatorcontrib>Bolli, Florian</creatorcontrib><creatorcontrib>Boutteau, Rémi</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Timofte, Radu</creatorcontrib><creatorcontrib>Ginhac, Dominique</creatorcontrib><creatorcontrib>Delbruck, Tobi</creatorcontrib><title>Steering Prediction via a Multi-Sensor System for Autonomous Racing</title><title>arXiv.org</title><description>Autonomous racing has rapidly gained research attention. Traditionally, racing cars rely on 2D LiDAR as their primary visual system. In this work, we explore the integration of an event camera with the existing system to provide enhanced temporal information. Our goal is to fuse the 2D LiDAR data with event data in an end-to-end learning framework for steering prediction, which is crucial for autonomous racing. To the best of our knowledge, this is the first study addressing this challenging research topic. We start by creating a multisensor dataset specifically for steering prediction. Using this dataset, we establish a benchmark by evaluating various SOTA fusion methods. Our observations reveal that existing methods often incur substantial computational costs. To address this, we apply low-rank techniques to propose a novel, efficient, and effective fusion design. We introduce a new fusion learning policy to guide the fusion process, enhancing robustness against misalignment. Our fusion architecture provides better steering prediction than LiDAR alone, significantly reducing the RMSE from 7.72 to 1.28. Compared to the second-best fusion method, our work represents only 11% of the learnable parameters while achieving better accuracy. The source code, dataset, and benchmark will be released to promote future research.</description><subject>Benchmarks</subject><subject>Datasets</subject><subject>Learning</subject><subject>Lidar</subject><subject>Misalignment</subject><subject>Race cars</subject><subject>Source code</subject><subject>Steering</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwDi5JTS3KzEtXCChKTclMLsnMz1Moy0xUSFTwLc0pydQNTs0rzi9SCK4sLknNVUgDMh1LS_Lz8nPzS4sVghKTgVp5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCre2NDQ0BxoubmJMXGqAO9MOhU</recordid><startdate>20240928</startdate><enddate>20240928</enddate><creator>Zhou, Zhuyun</creator><creator>Wu, Zongwei</creator><creator>Bolli, Florian</creator><creator>Boutteau, Rémi</creator><creator>Yang, Fan</creator><creator>Timofte, Radu</creator><creator>Ginhac, Dominique</creator><creator>Delbruck, Tobi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240928</creationdate><title>Steering Prediction via a Multi-Sensor System for Autonomous Racing</title><author>Zhou, Zhuyun ; Wu, Zongwei ; Bolli, Florian ; Boutteau, Rémi ; Yang, Fan ; Timofte, Radu ; Ginhac, Dominique ; Delbruck, Tobi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31117267743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarks</topic><topic>Datasets</topic><topic>Learning</topic><topic>Lidar</topic><topic>Misalignment</topic><topic>Race cars</topic><topic>Source code</topic><topic>Steering</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhuyun</creatorcontrib><creatorcontrib>Wu, Zongwei</creatorcontrib><creatorcontrib>Bolli, Florian</creatorcontrib><creatorcontrib>Boutteau, Rémi</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Timofte, Radu</creatorcontrib><creatorcontrib>Ginhac, Dominique</creatorcontrib><creatorcontrib>Delbruck, Tobi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhuyun</au><au>Wu, Zongwei</au><au>Bolli, Florian</au><au>Boutteau, Rémi</au><au>Yang, Fan</au><au>Timofte, Radu</au><au>Ginhac, Dominique</au><au>Delbruck, Tobi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Steering Prediction via a Multi-Sensor System for Autonomous Racing</atitle><jtitle>arXiv.org</jtitle><date>2024-09-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Autonomous racing has rapidly gained research attention. Traditionally, racing cars rely on 2D LiDAR as their primary visual system. In this work, we explore the integration of an event camera with the existing system to provide enhanced temporal information. Our goal is to fuse the 2D LiDAR data with event data in an end-to-end learning framework for steering prediction, which is crucial for autonomous racing. To the best of our knowledge, this is the first study addressing this challenging research topic. We start by creating a multisensor dataset specifically for steering prediction. Using this dataset, we establish a benchmark by evaluating various SOTA fusion methods. Our observations reveal that existing methods often incur substantial computational costs. To address this, we apply low-rank techniques to propose a novel, efficient, and effective fusion design. We introduce a new fusion learning policy to guide the fusion process, enhancing robustness against misalignment. Our fusion architecture provides better steering prediction than LiDAR alone, significantly reducing the RMSE from 7.72 to 1.28. Compared to the second-best fusion method, our work represents only 11% of the learnable parameters while achieving better accuracy. The source code, dataset, and benchmark will be released to promote future research.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3111726774
source Publicly Available Content Database
subjects Benchmarks
Datasets
Learning
Lidar
Misalignment
Race cars
Source code
Steering
title Steering Prediction via a Multi-Sensor System for Autonomous Racing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Steering%20Prediction%20via%20a%20Multi-Sensor%20System%20for%20Autonomous%20Racing&rft.jtitle=arXiv.org&rft.au=Zhou,%20Zhuyun&rft.date=2024-09-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3111726774%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31117267743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3111726774&rft_id=info:pmid/&rfr_iscdi=true