Loading…

A deep learning-based taphonomical approach to distinguish the modifying agent in the Late Pleistocene site of Toll Cave (Barcelona, Spain)

One of the most widely used methods to associate lithic tools and bone assemblage in archaeological sites is the identification of cut-marks. However, the identification of these marks is still problematic in some localities on account of the similarities with the modifications generated by non-huma...

Full description

Saved in:
Bibliographic Details
Published in:Historical biology 2024-10, Vol.36 (10), p.2114-2123
Main Authors: Pizarro-Monzo, Marcos, Rosell, Jordi, Rufà, Anna, Rivals, Florent, Blasco, Ruth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-473e24ebfe880c952d326e31c94b94a39f4f20158c77bbcee9f17a2d3da066663
cites cdi_FETCH-LOGICAL-c338t-473e24ebfe880c952d326e31c94b94a39f4f20158c77bbcee9f17a2d3da066663
container_end_page 2123
container_issue 10
container_start_page 2114
container_title Historical biology
container_volume 36
creator Pizarro-Monzo, Marcos
Rosell, Jordi
Rufà, Anna
Rivals, Florent
Blasco, Ruth
description One of the most widely used methods to associate lithic tools and bone assemblage in archaeological sites is the identification of cut-marks. However, the identification of these marks is still problematic in some localities on account of the similarities with the modifications generated by non-human processes, including biostratinomic and post-depositional bone surface modifications. Toll Cave (Barcelona, Spain), with chronologies between 47.310 BP and 69.800 BP, is one of the case studies where the cut-marks could easily be confused with abundant grooves generated by the dragging of sedimentary particles (e.g. trampling), but also with the scores produced by carnivores. In this work, we present the results obtained from applying Deep Learning (DL) models to the taphonomic analysis of the site. This methodological approach has allowed us to distinguish the bone surface modifications with 97.5% reliability. We show the usefulness of this technique to help solve many taphonomic equifinality problems in the archaeological assemblages, as well as the need to implement new approaches to eliminate subjectivity in the descriptions of bone damage and make more accurate inferences about the past.
doi_str_mv 10.1080/08912963.2023.2242370
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111739228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111739228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-473e24ebfe880c952d326e31c94b94a39f4f20158c77bbcee9f17a2d3da066663</originalsourceid><addsrcrecordid>eNp9kNtqGzEQhkVoIY7bRwgIetNAN9Vh7V3dJTHNAQwtNLkWs9pRrCBLW2md4GfoS0dbJ7edixnm55sZ5ifklLNzzlr2nbWKC7WU54KJkkQtZMOOyIwzoSohW_6BzCammqBjcpLzE2NcLpZyRv5e0h5xoB4hBRceqw4y9nSEYRND3DoDnsIwpAhmQ8dIe5fHgu1cLu0G6Tb2zu6LQuERw0hd-CevYUT6y2Oho8GANLsiREvvo_d0Bc9Iv15BMuhjgG_09wAunH0iHy34jJ_f6pw8XP-4X91W6583d6vLdWWkbMeqbiSKGjuLbcuMWoheiiVKblTdqRqksrUVjC9a0zRdZxCV5Q0Uqge2LCHn5Mthb3nrzw7zqJ_iLoVyUkvOeSOVEG2hFgfKpJhzQquH5LaQ9pozPfmu333Xk-_6zfcyd3GYc8HGtIWXmHyvR9j7mGyCYNx05r8rXgGqkYpr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111739228</pqid></control><display><type>article</type><title>A deep learning-based taphonomical approach to distinguish the modifying agent in the Late Pleistocene site of Toll Cave (Barcelona, Spain)</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Pizarro-Monzo, Marcos ; Rosell, Jordi ; Rufà, Anna ; Rivals, Florent ; Blasco, Ruth</creator><creatorcontrib>Pizarro-Monzo, Marcos ; Rosell, Jordi ; Rufà, Anna ; Rivals, Florent ; Blasco, Ruth</creatorcontrib><description>One of the most widely used methods to associate lithic tools and bone assemblage in archaeological sites is the identification of cut-marks. However, the identification of these marks is still problematic in some localities on account of the similarities with the modifications generated by non-human processes, including biostratinomic and post-depositional bone surface modifications. Toll Cave (Barcelona, Spain), with chronologies between 47.310 BP and 69.800 BP, is one of the case studies where the cut-marks could easily be confused with abundant grooves generated by the dragging of sedimentary particles (e.g. trampling), but also with the scores produced by carnivores. In this work, we present the results obtained from applying Deep Learning (DL) models to the taphonomic analysis of the site. This methodological approach has allowed us to distinguish the bone surface modifications with 97.5% reliability. We show the usefulness of this technique to help solve many taphonomic equifinality problems in the archaeological assemblages, as well as the need to implement new approaches to eliminate subjectivity in the descriptions of bone damage and make more accurate inferences about the past.</description><identifier>ISSN: 0891-2963</identifier><identifier>EISSN: 1029-2381</identifier><identifier>DOI: 10.1080/08912963.2023.2242370</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Archaeological sites ; Carnivores ; cut-marks ; Deep learning ; Deep Learning (DL) ; Grooves ; Historic sites ; Late Pleistocene ; Pleistocene ; scores ; Taphonomy ; Toll Cave ; Trampling</subject><ispartof>Historical biology, 2024-10, Vol.36 (10), p.2114-2123</ispartof><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-473e24ebfe880c952d326e31c94b94a39f4f20158c77bbcee9f17a2d3da066663</citedby><cites>FETCH-LOGICAL-c338t-473e24ebfe880c952d326e31c94b94a39f4f20158c77bbcee9f17a2d3da066663</cites><orcidid>0000-0001-8074-9254 ; 0000-0002-6758-6291 ; 0000-0003-1278-4220 ; 0000-0001-9804-739X ; 0000-0003-4290-7922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pizarro-Monzo, Marcos</creatorcontrib><creatorcontrib>Rosell, Jordi</creatorcontrib><creatorcontrib>Rufà, Anna</creatorcontrib><creatorcontrib>Rivals, Florent</creatorcontrib><creatorcontrib>Blasco, Ruth</creatorcontrib><title>A deep learning-based taphonomical approach to distinguish the modifying agent in the Late Pleistocene site of Toll Cave (Barcelona, Spain)</title><title>Historical biology</title><description>One of the most widely used methods to associate lithic tools and bone assemblage in archaeological sites is the identification of cut-marks. However, the identification of these marks is still problematic in some localities on account of the similarities with the modifications generated by non-human processes, including biostratinomic and post-depositional bone surface modifications. Toll Cave (Barcelona, Spain), with chronologies between 47.310 BP and 69.800 BP, is one of the case studies where the cut-marks could easily be confused with abundant grooves generated by the dragging of sedimentary particles (e.g. trampling), but also with the scores produced by carnivores. In this work, we present the results obtained from applying Deep Learning (DL) models to the taphonomic analysis of the site. This methodological approach has allowed us to distinguish the bone surface modifications with 97.5% reliability. We show the usefulness of this technique to help solve many taphonomic equifinality problems in the archaeological assemblages, as well as the need to implement new approaches to eliminate subjectivity in the descriptions of bone damage and make more accurate inferences about the past.</description><subject>Archaeological sites</subject><subject>Carnivores</subject><subject>cut-marks</subject><subject>Deep learning</subject><subject>Deep Learning (DL)</subject><subject>Grooves</subject><subject>Historic sites</subject><subject>Late Pleistocene</subject><subject>Pleistocene</subject><subject>scores</subject><subject>Taphonomy</subject><subject>Toll Cave</subject><subject>Trampling</subject><issn>0891-2963</issn><issn>1029-2381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kNtqGzEQhkVoIY7bRwgIetNAN9Vh7V3dJTHNAQwtNLkWs9pRrCBLW2md4GfoS0dbJ7edixnm55sZ5ifklLNzzlr2nbWKC7WU54KJkkQtZMOOyIwzoSohW_6BzCammqBjcpLzE2NcLpZyRv5e0h5xoB4hBRceqw4y9nSEYRND3DoDnsIwpAhmQ8dIe5fHgu1cLu0G6Tb2zu6LQuERw0hd-CevYUT6y2Oho8GANLsiREvvo_d0Bc9Iv15BMuhjgG_09wAunH0iHy34jJ_f6pw8XP-4X91W6583d6vLdWWkbMeqbiSKGjuLbcuMWoheiiVKblTdqRqksrUVjC9a0zRdZxCV5Q0Uqge2LCHn5Mthb3nrzw7zqJ_iLoVyUkvOeSOVEG2hFgfKpJhzQquH5LaQ9pozPfmu333Xk-_6zfcyd3GYc8HGtIWXmHyvR9j7mGyCYNx05r8rXgGqkYpr</recordid><startdate>20241002</startdate><enddate>20241002</enddate><creator>Pizarro-Monzo, Marcos</creator><creator>Rosell, Jordi</creator><creator>Rufà, Anna</creator><creator>Rivals, Florent</creator><creator>Blasco, Ruth</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>C1K</scope><orcidid>https://orcid.org/0000-0001-8074-9254</orcidid><orcidid>https://orcid.org/0000-0002-6758-6291</orcidid><orcidid>https://orcid.org/0000-0003-1278-4220</orcidid><orcidid>https://orcid.org/0000-0001-9804-739X</orcidid><orcidid>https://orcid.org/0000-0003-4290-7922</orcidid></search><sort><creationdate>20241002</creationdate><title>A deep learning-based taphonomical approach to distinguish the modifying agent in the Late Pleistocene site of Toll Cave (Barcelona, Spain)</title><author>Pizarro-Monzo, Marcos ; Rosell, Jordi ; Rufà, Anna ; Rivals, Florent ; Blasco, Ruth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-473e24ebfe880c952d326e31c94b94a39f4f20158c77bbcee9f17a2d3da066663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Archaeological sites</topic><topic>Carnivores</topic><topic>cut-marks</topic><topic>Deep learning</topic><topic>Deep Learning (DL)</topic><topic>Grooves</topic><topic>Historic sites</topic><topic>Late Pleistocene</topic><topic>Pleistocene</topic><topic>scores</topic><topic>Taphonomy</topic><topic>Toll Cave</topic><topic>Trampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pizarro-Monzo, Marcos</creatorcontrib><creatorcontrib>Rosell, Jordi</creatorcontrib><creatorcontrib>Rufà, Anna</creatorcontrib><creatorcontrib>Rivals, Florent</creatorcontrib><creatorcontrib>Blasco, Ruth</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Historical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pizarro-Monzo, Marcos</au><au>Rosell, Jordi</au><au>Rufà, Anna</au><au>Rivals, Florent</au><au>Blasco, Ruth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep learning-based taphonomical approach to distinguish the modifying agent in the Late Pleistocene site of Toll Cave (Barcelona, Spain)</atitle><jtitle>Historical biology</jtitle><date>2024-10-02</date><risdate>2024</risdate><volume>36</volume><issue>10</issue><spage>2114</spage><epage>2123</epage><pages>2114-2123</pages><issn>0891-2963</issn><eissn>1029-2381</eissn><abstract>One of the most widely used methods to associate lithic tools and bone assemblage in archaeological sites is the identification of cut-marks. However, the identification of these marks is still problematic in some localities on account of the similarities with the modifications generated by non-human processes, including biostratinomic and post-depositional bone surface modifications. Toll Cave (Barcelona, Spain), with chronologies between 47.310 BP and 69.800 BP, is one of the case studies where the cut-marks could easily be confused with abundant grooves generated by the dragging of sedimentary particles (e.g. trampling), but also with the scores produced by carnivores. In this work, we present the results obtained from applying Deep Learning (DL) models to the taphonomic analysis of the site. This methodological approach has allowed us to distinguish the bone surface modifications with 97.5% reliability. We show the usefulness of this technique to help solve many taphonomic equifinality problems in the archaeological assemblages, as well as the need to implement new approaches to eliminate subjectivity in the descriptions of bone damage and make more accurate inferences about the past.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/08912963.2023.2242370</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8074-9254</orcidid><orcidid>https://orcid.org/0000-0002-6758-6291</orcidid><orcidid>https://orcid.org/0000-0003-1278-4220</orcidid><orcidid>https://orcid.org/0000-0001-9804-739X</orcidid><orcidid>https://orcid.org/0000-0003-4290-7922</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0891-2963
ispartof Historical biology, 2024-10, Vol.36 (10), p.2114-2123
issn 0891-2963
1029-2381
language eng
recordid cdi_proquest_journals_3111739228
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Archaeological sites
Carnivores
cut-marks
Deep learning
Deep Learning (DL)
Grooves
Historic sites
Late Pleistocene
Pleistocene
scores
Taphonomy
Toll Cave
Trampling
title A deep learning-based taphonomical approach to distinguish the modifying agent in the Late Pleistocene site of Toll Cave (Barcelona, Spain)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20learning-based%20taphonomical%20approach%20to%20distinguish%20the%20modifying%20agent%20in%20the%20Late%20Pleistocene%20site%20of%20Toll%20Cave%20(Barcelona,%20Spain)&rft.jtitle=Historical%20biology&rft.au=Pizarro-Monzo,%20Marcos&rft.date=2024-10-02&rft.volume=36&rft.issue=10&rft.spage=2114&rft.epage=2123&rft.pages=2114-2123&rft.issn=0891-2963&rft.eissn=1029-2381&rft_id=info:doi/10.1080/08912963.2023.2242370&rft_dat=%3Cproquest_cross%3E3111739228%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-473e24ebfe880c952d326e31c94b94a39f4f20158c77bbcee9f17a2d3da066663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3111739228&rft_id=info:pmid/&rfr_iscdi=true