Loading…
Face Forgery Detection via Multi-Feature Fusion and Local Enhancement
With the rapid growth of Internet technology, security concerns have risen, particularly with the prevalence of Deepfakes, a popular visual forgery technique. Therefore, there is necessary to research more powerful methods to detect Deepfakes. However, many Convolutional Neural Networks-based detect...
Saved in:
Published in: | IEEE transactions on circuits and systems for video technology 2024-09, Vol.34 (9), p.8972-8977 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c211t-3a3823306430ca1559d1f535e21776b8591673834f07ed64b910787467a5177d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c211t-3a3823306430ca1559d1f535e21776b8591673834f07ed64b910787467a5177d3 |
container_end_page | 8977 |
container_issue | 9 |
container_start_page | 8972 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 34 |
creator | Zhang, Dengyong Chen, Jiahao Liao, Xin Li, Feng Chen, Jiaxin Yang, Gaobo |
description | With the rapid growth of Internet technology, security concerns have risen, particularly with the prevalence of Deepfakes, a popular visual forgery technique. Therefore, there is necessary to research more powerful methods to detect Deepfakes. However, many Convolutional Neural Networks-based detection methods struggle with cross-database performance, often overfitting to specific color textures. We observe that image noises can weaken the influence of color textures and expose the forgery traces in the noise domain. This is because tampering techniques, when altering face images, disrupt the consistency of feature distribution in the noise space. And the forgery traces in the noise space are complementary to the tampering artifacts present in the image space information. Therefore, we propose a novel face forgery detection network that combines spatial domain and noise domain. Our Dual Feature Fusion Module and Local Enhancement Attention Module contribute to more comprehensive feature representations, enhancing our method's discriminative ability. Experimental results demonstrate superior performance compared to existing methods on mainstream datasets. https://github.com/jhchen1998/DeepfakeDetection . |
doi_str_mv | 10.1109/TCSVT.2024.3390945 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3112218327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10504924</ieee_id><sourcerecordid>3112218327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-3a3823306430ca1559d1f535e21776b8591673834f07ed64b910787467a5177d3</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmPwBxCHSpw74nw0yRGNFZCGODC4RlnrQqetHUmKtH9PxnbgZEt-Xtt6CLkGOgGg5m4xfftYTBhlYsK5oUbIEzICKXXOGJWnqacScs1AnpOLEFaUgtBCjcisdBVmZe8_0e-yB4xYxbbvsp_WZS_DOrZ5iS4OPjFD2A9cV2fzvnLrbNZ9ua7CDXbxkpw1bh3w6ljH5L2cLaZP-fz18Xl6P88rBhBz7rhmnNNCcFq59J6poZFcIgOliqWWBgrFNRcNVVgXYmmAKq1EoZxMRM3H5Pawd-v77wFDtKt-8F06aTkAY6A5U4liB6ryfQgeG7v17cb5nQVq97rsny6712WPulLo5hBqEfFfQFJhmOC_L9Vjhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112218327</pqid></control><display><type>article</type><title>Face Forgery Detection via Multi-Feature Fusion and Local Enhancement</title><source>IEEE Xplore (Online service)</source><creator>Zhang, Dengyong ; Chen, Jiahao ; Liao, Xin ; Li, Feng ; Chen, Jiaxin ; Yang, Gaobo</creator><creatorcontrib>Zhang, Dengyong ; Chen, Jiahao ; Liao, Xin ; Li, Feng ; Chen, Jiaxin ; Yang, Gaobo</creatorcontrib><description>With the rapid growth of Internet technology, security concerns have risen, particularly with the prevalence of Deepfakes, a popular visual forgery technique. Therefore, there is necessary to research more powerful methods to detect Deepfakes. However, many Convolutional Neural Networks-based detection methods struggle with cross-database performance, often overfitting to specific color textures. We observe that image noises can weaken the influence of color textures and expose the forgery traces in the noise domain. This is because tampering techniques, when altering face images, disrupt the consistency of feature distribution in the noise space. And the forgery traces in the noise space are complementary to the tampering artifacts present in the image space information. Therefore, we propose a novel face forgery detection network that combines spatial domain and noise domain. Our Dual Feature Fusion Module and Local Enhancement Attention Module contribute to more comprehensive feature representations, enhancing our method's discriminative ability. Experimental results demonstrate superior performance compared to existing methods on mainstream datasets. https://github.com/jhchen1998/DeepfakeDetection .</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2024.3390945</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Color ; Deception ; Deepfake ; Deepfakes ; face forgery detection ; Faces ; Feature extraction ; Filters ; Forgery ; Frequency-domain analysis ; Image enhancement ; Modules ; Noise ; noise domain ; spatial domain ; Visual observation</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2024-09, Vol.34 (9), p.8972-8977</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-3a3823306430ca1559d1f535e21776b8591673834f07ed64b910787467a5177d3</citedby><cites>FETCH-LOGICAL-c211t-3a3823306430ca1559d1f535e21776b8591673834f07ed64b910787467a5177d3</cites><orcidid>0000-0003-2734-659X ; 0009-0007-3469-8856 ; 0000-0002-9131-0578 ; 0000-0003-2035-6242 ; 0000-0002-2789-2980 ; 0000-0003-2718-9918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10504924$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Dengyong</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Liao, Xin</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Chen, Jiaxin</creatorcontrib><creatorcontrib>Yang, Gaobo</creatorcontrib><title>Face Forgery Detection via Multi-Feature Fusion and Local Enhancement</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>With the rapid growth of Internet technology, security concerns have risen, particularly with the prevalence of Deepfakes, a popular visual forgery technique. Therefore, there is necessary to research more powerful methods to detect Deepfakes. However, many Convolutional Neural Networks-based detection methods struggle with cross-database performance, often overfitting to specific color textures. We observe that image noises can weaken the influence of color textures and expose the forgery traces in the noise domain. This is because tampering techniques, when altering face images, disrupt the consistency of feature distribution in the noise space. And the forgery traces in the noise space are complementary to the tampering artifacts present in the image space information. Therefore, we propose a novel face forgery detection network that combines spatial domain and noise domain. Our Dual Feature Fusion Module and Local Enhancement Attention Module contribute to more comprehensive feature representations, enhancing our method's discriminative ability. Experimental results demonstrate superior performance compared to existing methods on mainstream datasets. https://github.com/jhchen1998/DeepfakeDetection .</description><subject>Artificial neural networks</subject><subject>Color</subject><subject>Deception</subject><subject>Deepfake</subject><subject>Deepfakes</subject><subject>face forgery detection</subject><subject>Faces</subject><subject>Feature extraction</subject><subject>Filters</subject><subject>Forgery</subject><subject>Frequency-domain analysis</subject><subject>Image enhancement</subject><subject>Modules</subject><subject>Noise</subject><subject>noise domain</subject><subject>spatial domain</subject><subject>Visual observation</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwzAMhiMEEmPwBxCHSpw74nw0yRGNFZCGODC4RlnrQqetHUmKtH9PxnbgZEt-Xtt6CLkGOgGg5m4xfftYTBhlYsK5oUbIEzICKXXOGJWnqacScs1AnpOLEFaUgtBCjcisdBVmZe8_0e-yB4xYxbbvsp_WZS_DOrZ5iS4OPjFD2A9cV2fzvnLrbNZ9ua7CDXbxkpw1bh3w6ljH5L2cLaZP-fz18Xl6P88rBhBz7rhmnNNCcFq59J6poZFcIgOliqWWBgrFNRcNVVgXYmmAKq1EoZxMRM3H5Pawd-v77wFDtKt-8F06aTkAY6A5U4liB6ryfQgeG7v17cb5nQVq97rsny6712WPulLo5hBqEfFfQFJhmOC_L9Vjhw</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Zhang, Dengyong</creator><creator>Chen, Jiahao</creator><creator>Liao, Xin</creator><creator>Li, Feng</creator><creator>Chen, Jiaxin</creator><creator>Yang, Gaobo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2734-659X</orcidid><orcidid>https://orcid.org/0009-0007-3469-8856</orcidid><orcidid>https://orcid.org/0000-0002-9131-0578</orcidid><orcidid>https://orcid.org/0000-0003-2035-6242</orcidid><orcidid>https://orcid.org/0000-0002-2789-2980</orcidid><orcidid>https://orcid.org/0000-0003-2718-9918</orcidid></search><sort><creationdate>202409</creationdate><title>Face Forgery Detection via Multi-Feature Fusion and Local Enhancement</title><author>Zhang, Dengyong ; Chen, Jiahao ; Liao, Xin ; Li, Feng ; Chen, Jiaxin ; Yang, Gaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-3a3823306430ca1559d1f535e21776b8591673834f07ed64b910787467a5177d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Color</topic><topic>Deception</topic><topic>Deepfake</topic><topic>Deepfakes</topic><topic>face forgery detection</topic><topic>Faces</topic><topic>Feature extraction</topic><topic>Filters</topic><topic>Forgery</topic><topic>Frequency-domain analysis</topic><topic>Image enhancement</topic><topic>Modules</topic><topic>Noise</topic><topic>noise domain</topic><topic>spatial domain</topic><topic>Visual observation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dengyong</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Liao, Xin</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Chen, Jiaxin</creatorcontrib><creatorcontrib>Yang, Gaobo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dengyong</au><au>Chen, Jiahao</au><au>Liao, Xin</au><au>Li, Feng</au><au>Chen, Jiaxin</au><au>Yang, Gaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face Forgery Detection via Multi-Feature Fusion and Local Enhancement</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2024-09</date><risdate>2024</risdate><volume>34</volume><issue>9</issue><spage>8972</spage><epage>8977</epage><pages>8972-8977</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>With the rapid growth of Internet technology, security concerns have risen, particularly with the prevalence of Deepfakes, a popular visual forgery technique. Therefore, there is necessary to research more powerful methods to detect Deepfakes. However, many Convolutional Neural Networks-based detection methods struggle with cross-database performance, often overfitting to specific color textures. We observe that image noises can weaken the influence of color textures and expose the forgery traces in the noise domain. This is because tampering techniques, when altering face images, disrupt the consistency of feature distribution in the noise space. And the forgery traces in the noise space are complementary to the tampering artifacts present in the image space information. Therefore, we propose a novel face forgery detection network that combines spatial domain and noise domain. Our Dual Feature Fusion Module and Local Enhancement Attention Module contribute to more comprehensive feature representations, enhancing our method's discriminative ability. Experimental results demonstrate superior performance compared to existing methods on mainstream datasets. https://github.com/jhchen1998/DeepfakeDetection .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2024.3390945</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2734-659X</orcidid><orcidid>https://orcid.org/0009-0007-3469-8856</orcidid><orcidid>https://orcid.org/0000-0002-9131-0578</orcidid><orcidid>https://orcid.org/0000-0003-2035-6242</orcidid><orcidid>https://orcid.org/0000-0002-2789-2980</orcidid><orcidid>https://orcid.org/0000-0003-2718-9918</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2024-09, Vol.34 (9), p.8972-8977 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_proquest_journals_3112218327 |
source | IEEE Xplore (Online service) |
subjects | Artificial neural networks Color Deception Deepfake Deepfakes face forgery detection Faces Feature extraction Filters Forgery Frequency-domain analysis Image enhancement Modules Noise noise domain spatial domain Visual observation |
title | Face Forgery Detection via Multi-Feature Fusion and Local Enhancement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20Forgery%20Detection%20via%20Multi-Feature%20Fusion%20and%20Local%20Enhancement&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zhang,%20Dengyong&rft.date=2024-09&rft.volume=34&rft.issue=9&rft.spage=8972&rft.epage=8977&rft.pages=8972-8977&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2024.3390945&rft_dat=%3Cproquest_ieee_%3E3112218327%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c211t-3a3823306430ca1559d1f535e21776b8591673834f07ed64b910787467a5177d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112218327&rft_id=info:pmid/&rft_ieee_id=10504924&rfr_iscdi=true |