Loading…

Face Forgery Detection via Multi-Feature Fusion and Local Enhancement

With the rapid growth of Internet technology, security concerns have risen, particularly with the prevalence of Deepfakes, a popular visual forgery technique. Therefore, there is necessary to research more powerful methods to detect Deepfakes. However, many Convolutional Neural Networks-based detect...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology 2024-09, Vol.34 (9), p.8972-8977
Main Authors: Zhang, Dengyong, Chen, Jiahao, Liao, Xin, Li, Feng, Chen, Jiaxin, Yang, Gaobo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c211t-3a3823306430ca1559d1f535e21776b8591673834f07ed64b910787467a5177d3
cites cdi_FETCH-LOGICAL-c211t-3a3823306430ca1559d1f535e21776b8591673834f07ed64b910787467a5177d3
container_end_page 8977
container_issue 9
container_start_page 8972
container_title IEEE transactions on circuits and systems for video technology
container_volume 34
creator Zhang, Dengyong
Chen, Jiahao
Liao, Xin
Li, Feng
Chen, Jiaxin
Yang, Gaobo
description With the rapid growth of Internet technology, security concerns have risen, particularly with the prevalence of Deepfakes, a popular visual forgery technique. Therefore, there is necessary to research more powerful methods to detect Deepfakes. However, many Convolutional Neural Networks-based detection methods struggle with cross-database performance, often overfitting to specific color textures. We observe that image noises can weaken the influence of color textures and expose the forgery traces in the noise domain. This is because tampering techniques, when altering face images, disrupt the consistency of feature distribution in the noise space. And the forgery traces in the noise space are complementary to the tampering artifacts present in the image space information. Therefore, we propose a novel face forgery detection network that combines spatial domain and noise domain. Our Dual Feature Fusion Module and Local Enhancement Attention Module contribute to more comprehensive feature representations, enhancing our method's discriminative ability. Experimental results demonstrate superior performance compared to existing methods on mainstream datasets. https://github.com/jhchen1998/DeepfakeDetection .
doi_str_mv 10.1109/TCSVT.2024.3390945
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3112218327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10504924</ieee_id><sourcerecordid>3112218327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-3a3823306430ca1559d1f535e21776b8591673834f07ed64b910787467a5177d3</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmPwBxCHSpw74nw0yRGNFZCGODC4RlnrQqetHUmKtH9PxnbgZEt-Xtt6CLkGOgGg5m4xfftYTBhlYsK5oUbIEzICKXXOGJWnqacScs1AnpOLEFaUgtBCjcisdBVmZe8_0e-yB4xYxbbvsp_WZS_DOrZ5iS4OPjFD2A9cV2fzvnLrbNZ9ua7CDXbxkpw1bh3w6ljH5L2cLaZP-fz18Xl6P88rBhBz7rhmnNNCcFq59J6poZFcIgOliqWWBgrFNRcNVVgXYmmAKq1EoZxMRM3H5Pawd-v77wFDtKt-8F06aTkAY6A5U4liB6ryfQgeG7v17cb5nQVq97rsny6712WPulLo5hBqEfFfQFJhmOC_L9Vjhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112218327</pqid></control><display><type>article</type><title>Face Forgery Detection via Multi-Feature Fusion and Local Enhancement</title><source>IEEE Xplore (Online service)</source><creator>Zhang, Dengyong ; Chen, Jiahao ; Liao, Xin ; Li, Feng ; Chen, Jiaxin ; Yang, Gaobo</creator><creatorcontrib>Zhang, Dengyong ; Chen, Jiahao ; Liao, Xin ; Li, Feng ; Chen, Jiaxin ; Yang, Gaobo</creatorcontrib><description>With the rapid growth of Internet technology, security concerns have risen, particularly with the prevalence of Deepfakes, a popular visual forgery technique. Therefore, there is necessary to research more powerful methods to detect Deepfakes. However, many Convolutional Neural Networks-based detection methods struggle with cross-database performance, often overfitting to specific color textures. We observe that image noises can weaken the influence of color textures and expose the forgery traces in the noise domain. This is because tampering techniques, when altering face images, disrupt the consistency of feature distribution in the noise space. And the forgery traces in the noise space are complementary to the tampering artifacts present in the image space information. Therefore, we propose a novel face forgery detection network that combines spatial domain and noise domain. Our Dual Feature Fusion Module and Local Enhancement Attention Module contribute to more comprehensive feature representations, enhancing our method's discriminative ability. Experimental results demonstrate superior performance compared to existing methods on mainstream datasets. https://github.com/jhchen1998/DeepfakeDetection .</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2024.3390945</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Color ; Deception ; Deepfake ; Deepfakes ; face forgery detection ; Faces ; Feature extraction ; Filters ; Forgery ; Frequency-domain analysis ; Image enhancement ; Modules ; Noise ; noise domain ; spatial domain ; Visual observation</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2024-09, Vol.34 (9), p.8972-8977</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-3a3823306430ca1559d1f535e21776b8591673834f07ed64b910787467a5177d3</citedby><cites>FETCH-LOGICAL-c211t-3a3823306430ca1559d1f535e21776b8591673834f07ed64b910787467a5177d3</cites><orcidid>0000-0003-2734-659X ; 0009-0007-3469-8856 ; 0000-0002-9131-0578 ; 0000-0003-2035-6242 ; 0000-0002-2789-2980 ; 0000-0003-2718-9918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10504924$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Dengyong</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Liao, Xin</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Chen, Jiaxin</creatorcontrib><creatorcontrib>Yang, Gaobo</creatorcontrib><title>Face Forgery Detection via Multi-Feature Fusion and Local Enhancement</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>With the rapid growth of Internet technology, security concerns have risen, particularly with the prevalence of Deepfakes, a popular visual forgery technique. Therefore, there is necessary to research more powerful methods to detect Deepfakes. However, many Convolutional Neural Networks-based detection methods struggle with cross-database performance, often overfitting to specific color textures. We observe that image noises can weaken the influence of color textures and expose the forgery traces in the noise domain. This is because tampering techniques, when altering face images, disrupt the consistency of feature distribution in the noise space. And the forgery traces in the noise space are complementary to the tampering artifacts present in the image space information. Therefore, we propose a novel face forgery detection network that combines spatial domain and noise domain. Our Dual Feature Fusion Module and Local Enhancement Attention Module contribute to more comprehensive feature representations, enhancing our method's discriminative ability. Experimental results demonstrate superior performance compared to existing methods on mainstream datasets. https://github.com/jhchen1998/DeepfakeDetection .</description><subject>Artificial neural networks</subject><subject>Color</subject><subject>Deception</subject><subject>Deepfake</subject><subject>Deepfakes</subject><subject>face forgery detection</subject><subject>Faces</subject><subject>Feature extraction</subject><subject>Filters</subject><subject>Forgery</subject><subject>Frequency-domain analysis</subject><subject>Image enhancement</subject><subject>Modules</subject><subject>Noise</subject><subject>noise domain</subject><subject>spatial domain</subject><subject>Visual observation</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwzAMhiMEEmPwBxCHSpw74nw0yRGNFZCGODC4RlnrQqetHUmKtH9PxnbgZEt-Xtt6CLkGOgGg5m4xfftYTBhlYsK5oUbIEzICKXXOGJWnqacScs1AnpOLEFaUgtBCjcisdBVmZe8_0e-yB4xYxbbvsp_WZS_DOrZ5iS4OPjFD2A9cV2fzvnLrbNZ9ua7CDXbxkpw1bh3w6ljH5L2cLaZP-fz18Xl6P88rBhBz7rhmnNNCcFq59J6poZFcIgOliqWWBgrFNRcNVVgXYmmAKq1EoZxMRM3H5Pawd-v77wFDtKt-8F06aTkAY6A5U4liB6ryfQgeG7v17cb5nQVq97rsny6712WPulLo5hBqEfFfQFJhmOC_L9Vjhw</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Zhang, Dengyong</creator><creator>Chen, Jiahao</creator><creator>Liao, Xin</creator><creator>Li, Feng</creator><creator>Chen, Jiaxin</creator><creator>Yang, Gaobo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2734-659X</orcidid><orcidid>https://orcid.org/0009-0007-3469-8856</orcidid><orcidid>https://orcid.org/0000-0002-9131-0578</orcidid><orcidid>https://orcid.org/0000-0003-2035-6242</orcidid><orcidid>https://orcid.org/0000-0002-2789-2980</orcidid><orcidid>https://orcid.org/0000-0003-2718-9918</orcidid></search><sort><creationdate>202409</creationdate><title>Face Forgery Detection via Multi-Feature Fusion and Local Enhancement</title><author>Zhang, Dengyong ; Chen, Jiahao ; Liao, Xin ; Li, Feng ; Chen, Jiaxin ; Yang, Gaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-3a3823306430ca1559d1f535e21776b8591673834f07ed64b910787467a5177d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Color</topic><topic>Deception</topic><topic>Deepfake</topic><topic>Deepfakes</topic><topic>face forgery detection</topic><topic>Faces</topic><topic>Feature extraction</topic><topic>Filters</topic><topic>Forgery</topic><topic>Frequency-domain analysis</topic><topic>Image enhancement</topic><topic>Modules</topic><topic>Noise</topic><topic>noise domain</topic><topic>spatial domain</topic><topic>Visual observation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dengyong</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Liao, Xin</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Chen, Jiaxin</creatorcontrib><creatorcontrib>Yang, Gaobo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dengyong</au><au>Chen, Jiahao</au><au>Liao, Xin</au><au>Li, Feng</au><au>Chen, Jiaxin</au><au>Yang, Gaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face Forgery Detection via Multi-Feature Fusion and Local Enhancement</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2024-09</date><risdate>2024</risdate><volume>34</volume><issue>9</issue><spage>8972</spage><epage>8977</epage><pages>8972-8977</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>With the rapid growth of Internet technology, security concerns have risen, particularly with the prevalence of Deepfakes, a popular visual forgery technique. Therefore, there is necessary to research more powerful methods to detect Deepfakes. However, many Convolutional Neural Networks-based detection methods struggle with cross-database performance, often overfitting to specific color textures. We observe that image noises can weaken the influence of color textures and expose the forgery traces in the noise domain. This is because tampering techniques, when altering face images, disrupt the consistency of feature distribution in the noise space. And the forgery traces in the noise space are complementary to the tampering artifacts present in the image space information. Therefore, we propose a novel face forgery detection network that combines spatial domain and noise domain. Our Dual Feature Fusion Module and Local Enhancement Attention Module contribute to more comprehensive feature representations, enhancing our method's discriminative ability. Experimental results demonstrate superior performance compared to existing methods on mainstream datasets. https://github.com/jhchen1998/DeepfakeDetection .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2024.3390945</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2734-659X</orcidid><orcidid>https://orcid.org/0009-0007-3469-8856</orcidid><orcidid>https://orcid.org/0000-0002-9131-0578</orcidid><orcidid>https://orcid.org/0000-0003-2035-6242</orcidid><orcidid>https://orcid.org/0000-0002-2789-2980</orcidid><orcidid>https://orcid.org/0000-0003-2718-9918</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2024-09, Vol.34 (9), p.8972-8977
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_3112218327
source IEEE Xplore (Online service)
subjects Artificial neural networks
Color
Deception
Deepfake
Deepfakes
face forgery detection
Faces
Feature extraction
Filters
Forgery
Frequency-domain analysis
Image enhancement
Modules
Noise
noise domain
spatial domain
Visual observation
title Face Forgery Detection via Multi-Feature Fusion and Local Enhancement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20Forgery%20Detection%20via%20Multi-Feature%20Fusion%20and%20Local%20Enhancement&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zhang,%20Dengyong&rft.date=2024-09&rft.volume=34&rft.issue=9&rft.spage=8972&rft.epage=8977&rft.pages=8972-8977&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2024.3390945&rft_dat=%3Cproquest_ieee_%3E3112218327%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c211t-3a3823306430ca1559d1f535e21776b8591673834f07ed64b910787467a5177d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112218327&rft_id=info:pmid/&rft_ieee_id=10504924&rfr_iscdi=true