Loading…

BBL-GAT: A Novel Method for Drug-Drug Interaction Extraction From Biomedical Literature

The identification of Drug-Drug Interactions (DDIs) is crucial for optimizing patient treatment and avoiding adverse reactions. With the rapid growth of biomedical literature, manual screening for DDIs has become impractical. Hence, the demand for automated DDI extraction methods is continuously inc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.134167-134184
Main Authors: Jia, Yaxun, Yuan, Zhu, Wang, Haoyang, Gong, Yunchao, Yang, Haixiang, Xiang, Zuo-Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-223cae791980254a9b4eba5b4bb6f82ddd58d00f92ec47a5f24714aa3de19e9f3
container_end_page 134184
container_issue
container_start_page 134167
container_title IEEE access
container_volume 12
creator Jia, Yaxun
Yuan, Zhu
Wang, Haoyang
Gong, Yunchao
Yang, Haixiang
Xiang, Zuo-Lin
description The identification of Drug-Drug Interactions (DDIs) is crucial for optimizing patient treatment and avoiding adverse reactions. With the rapid growth of biomedical literature, manual screening for DDIs has become impractical. Hence, the demand for automated DDI extraction methods is continuously increasing. Currently, although many methods have been proposed, feature supplementation and the latest GCN-based methods still face the problem of being unable to effectively extract key information. In this paper, we propose BBL-GAT, a novel method combining BioBERT-BiLSTM and Graph Attention Network (GAT), to extract DDIs from biomedical literature. BioBERT is employed for its ability to capture the semantic relationships between complex medical terms and drug names. BiLSTM is utilized to handle bidirectional contextual information, which is essential for understanding the context of drug-disease relationships. GAT dynamically learns the significance of drug nodes in different interactions through attention mechanisms, enhancing the precision of relationship extraction. We evaluated BBL-GAT on the DDI Extraction 2013 dataset and compared it with other popular DDI extraction methods. The experimental results demonstrate that BBL-GAT achieves an precision of 81.76%, a recall of 84.38%, and an F1-score of 82.47%, illustrating its effectiveness and superiority in DDI relationship extraction tasks.
doi_str_mv 10.1109/ACCESS.2024.3462101
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3112224034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10681076</ieee_id><doaj_id>oai_doaj_org_article_6698bf21a7134a8cadc3df5b6779d155</doaj_id><sourcerecordid>3112224034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-223cae791980254a9b4eba5b4bb6f82ddd58d00f92ec47a5f24714aa3de19e9f3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOAL4GCJc4rfibmloS2VChxaxNFy7DWkamtwUgR_T0oKYg-7o9XM7EqTJBcEDwjB6rooy9F8PqCY8gHjkhJMDpITSqRKmWDy8B8-Ts6bZom7yruVyE6S5-Fwlk6KxQ0q0EP4gBW6h_Y1OORDRLdx-5LuGppuWojGtnXYoNFn-wvHMazRsA5rcLU1KzSrd7R2G-EsOfJm1cD5fp4mT-PRorxLZ4-TaVnMUktz1aaUMmsgU0TlmApuVMWhMqLiVSV9Tp1zIncYe0XB8swIT3lGuDHMAVGgPDtNpr2vC2ap32K9NvFLB1Prn0WIL9rEtrYr0FKqvPKUmIwwbnJrnGXOi0pmmXJEiM7rqvd6i-F9C02rl2EbN937mhFCKeWY8Y7FepaNoWki-L-rBOtdILoPRO8C0ftAOtVlr6oB4J9C5gRnkn0DHhOFdg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112224034</pqid></control><display><type>article</type><title>BBL-GAT: A Novel Method for Drug-Drug Interaction Extraction From Biomedical Literature</title><source>IEEE Open Access Journals</source><creator>Jia, Yaxun ; Yuan, Zhu ; Wang, Haoyang ; Gong, Yunchao ; Yang, Haixiang ; Xiang, Zuo-Lin</creator><creatorcontrib>Jia, Yaxun ; Yuan, Zhu ; Wang, Haoyang ; Gong, Yunchao ; Yang, Haixiang ; Xiang, Zuo-Lin</creatorcontrib><description>The identification of Drug-Drug Interactions (DDIs) is crucial for optimizing patient treatment and avoiding adverse reactions. With the rapid growth of biomedical literature, manual screening for DDIs has become impractical. Hence, the demand for automated DDI extraction methods is continuously increasing. Currently, although many methods have been proposed, feature supplementation and the latest GCN-based methods still face the problem of being unable to effectively extract key information. In this paper, we propose BBL-GAT, a novel method combining BioBERT-BiLSTM and Graph Attention Network (GAT), to extract DDIs from biomedical literature. BioBERT is employed for its ability to capture the semantic relationships between complex medical terms and drug names. BiLSTM is utilized to handle bidirectional contextual information, which is essential for understanding the context of drug-disease relationships. GAT dynamically learns the significance of drug nodes in different interactions through attention mechanisms, enhancing the precision of relationship extraction. We evaluated BBL-GAT on the DDI Extraction 2013 dataset and compared it with other popular DDI extraction methods. The experimental results demonstrate that BBL-GAT achieves an precision of 81.76%, a recall of 84.38%, and an F1-score of 82.47%, illustrating its effectiveness and superiority in DDI relationship extraction tasks.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3462101</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attention ; Attention mechanisms ; BiLSTM ; BioBERT ; Biological system modeling ; Deep learning ; Drug-drug interactions ; Drugs ; Feature extraction ; GAT ; Long short term memory ; Recurrent neural networks ; Semantics</subject><ispartof>IEEE access, 2024, Vol.12, p.134167-134184</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-223cae791980254a9b4eba5b4bb6f82ddd58d00f92ec47a5f24714aa3de19e9f3</cites><orcidid>0000-0001-5808-4997 ; 0000-0003-4380-5311 ; 0000-0002-5725-842X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10681076$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jia, Yaxun</creatorcontrib><creatorcontrib>Yuan, Zhu</creatorcontrib><creatorcontrib>Wang, Haoyang</creatorcontrib><creatorcontrib>Gong, Yunchao</creatorcontrib><creatorcontrib>Yang, Haixiang</creatorcontrib><creatorcontrib>Xiang, Zuo-Lin</creatorcontrib><title>BBL-GAT: A Novel Method for Drug-Drug Interaction Extraction From Biomedical Literature</title><title>IEEE access</title><addtitle>Access</addtitle><description>The identification of Drug-Drug Interactions (DDIs) is crucial for optimizing patient treatment and avoiding adverse reactions. With the rapid growth of biomedical literature, manual screening for DDIs has become impractical. Hence, the demand for automated DDI extraction methods is continuously increasing. Currently, although many methods have been proposed, feature supplementation and the latest GCN-based methods still face the problem of being unable to effectively extract key information. In this paper, we propose BBL-GAT, a novel method combining BioBERT-BiLSTM and Graph Attention Network (GAT), to extract DDIs from biomedical literature. BioBERT is employed for its ability to capture the semantic relationships between complex medical terms and drug names. BiLSTM is utilized to handle bidirectional contextual information, which is essential for understanding the context of drug-disease relationships. GAT dynamically learns the significance of drug nodes in different interactions through attention mechanisms, enhancing the precision of relationship extraction. We evaluated BBL-GAT on the DDI Extraction 2013 dataset and compared it with other popular DDI extraction methods. The experimental results demonstrate that BBL-GAT achieves an precision of 81.76%, a recall of 84.38%, and an F1-score of 82.47%, illustrating its effectiveness and superiority in DDI relationship extraction tasks.</description><subject>Attention</subject><subject>Attention mechanisms</subject><subject>BiLSTM</subject><subject>BioBERT</subject><subject>Biological system modeling</subject><subject>Deep learning</subject><subject>Drug-drug interactions</subject><subject>Drugs</subject><subject>Feature extraction</subject><subject>GAT</subject><subject>Long short term memory</subject><subject>Recurrent neural networks</subject><subject>Semantics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOAL4GCJc4rfibmloS2VChxaxNFy7DWkamtwUgR_T0oKYg-7o9XM7EqTJBcEDwjB6rooy9F8PqCY8gHjkhJMDpITSqRKmWDy8B8-Ts6bZom7yruVyE6S5-Fwlk6KxQ0q0EP4gBW6h_Y1OORDRLdx-5LuGppuWojGtnXYoNFn-wvHMazRsA5rcLU1KzSrd7R2G-EsOfJm1cD5fp4mT-PRorxLZ4-TaVnMUktz1aaUMmsgU0TlmApuVMWhMqLiVSV9Tp1zIncYe0XB8swIT3lGuDHMAVGgPDtNpr2vC2ap32K9NvFLB1Prn0WIL9rEtrYr0FKqvPKUmIwwbnJrnGXOi0pmmXJEiM7rqvd6i-F9C02rl2EbN937mhFCKeWY8Y7FepaNoWki-L-rBOtdILoPRO8C0ftAOtVlr6oB4J9C5gRnkn0DHhOFdg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jia, Yaxun</creator><creator>Yuan, Zhu</creator><creator>Wang, Haoyang</creator><creator>Gong, Yunchao</creator><creator>Yang, Haixiang</creator><creator>Xiang, Zuo-Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5808-4997</orcidid><orcidid>https://orcid.org/0000-0003-4380-5311</orcidid><orcidid>https://orcid.org/0000-0002-5725-842X</orcidid></search><sort><creationdate>2024</creationdate><title>BBL-GAT: A Novel Method for Drug-Drug Interaction Extraction From Biomedical Literature</title><author>Jia, Yaxun ; Yuan, Zhu ; Wang, Haoyang ; Gong, Yunchao ; Yang, Haixiang ; Xiang, Zuo-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-223cae791980254a9b4eba5b4bb6f82ddd58d00f92ec47a5f24714aa3de19e9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attention</topic><topic>Attention mechanisms</topic><topic>BiLSTM</topic><topic>BioBERT</topic><topic>Biological system modeling</topic><topic>Deep learning</topic><topic>Drug-drug interactions</topic><topic>Drugs</topic><topic>Feature extraction</topic><topic>GAT</topic><topic>Long short term memory</topic><topic>Recurrent neural networks</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Yaxun</creatorcontrib><creatorcontrib>Yuan, Zhu</creatorcontrib><creatorcontrib>Wang, Haoyang</creatorcontrib><creatorcontrib>Gong, Yunchao</creatorcontrib><creatorcontrib>Yang, Haixiang</creatorcontrib><creatorcontrib>Xiang, Zuo-Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Yaxun</au><au>Yuan, Zhu</au><au>Wang, Haoyang</au><au>Gong, Yunchao</au><au>Yang, Haixiang</au><au>Xiang, Zuo-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BBL-GAT: A Novel Method for Drug-Drug Interaction Extraction From Biomedical Literature</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>134167</spage><epage>134184</epage><pages>134167-134184</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The identification of Drug-Drug Interactions (DDIs) is crucial for optimizing patient treatment and avoiding adverse reactions. With the rapid growth of biomedical literature, manual screening for DDIs has become impractical. Hence, the demand for automated DDI extraction methods is continuously increasing. Currently, although many methods have been proposed, feature supplementation and the latest GCN-based methods still face the problem of being unable to effectively extract key information. In this paper, we propose BBL-GAT, a novel method combining BioBERT-BiLSTM and Graph Attention Network (GAT), to extract DDIs from biomedical literature. BioBERT is employed for its ability to capture the semantic relationships between complex medical terms and drug names. BiLSTM is utilized to handle bidirectional contextual information, which is essential for understanding the context of drug-disease relationships. GAT dynamically learns the significance of drug nodes in different interactions through attention mechanisms, enhancing the precision of relationship extraction. We evaluated BBL-GAT on the DDI Extraction 2013 dataset and compared it with other popular DDI extraction methods. The experimental results demonstrate that BBL-GAT achieves an precision of 81.76%, a recall of 84.38%, and an F1-score of 82.47%, illustrating its effectiveness and superiority in DDI relationship extraction tasks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3462101</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5808-4997</orcidid><orcidid>https://orcid.org/0000-0003-4380-5311</orcidid><orcidid>https://orcid.org/0000-0002-5725-842X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.134167-134184
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3112224034
source IEEE Open Access Journals
subjects Attention
Attention mechanisms
BiLSTM
BioBERT
Biological system modeling
Deep learning
Drug-drug interactions
Drugs
Feature extraction
GAT
Long short term memory
Recurrent neural networks
Semantics
title BBL-GAT: A Novel Method for Drug-Drug Interaction Extraction From Biomedical Literature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BBL-GAT:%20A%20Novel%20Method%20for%20Drug-Drug%20Interaction%20Extraction%20From%20Biomedical%20Literature&rft.jtitle=IEEE%20access&rft.au=Jia,%20Yaxun&rft.date=2024&rft.volume=12&rft.spage=134167&rft.epage=134184&rft.pages=134167-134184&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3462101&rft_dat=%3Cproquest_doaj_%3E3112224034%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-223cae791980254a9b4eba5b4bb6f82ddd58d00f92ec47a5f24714aa3de19e9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112224034&rft_id=info:pmid/&rft_ieee_id=10681076&rfr_iscdi=true