Loading…
BBL-GAT: A Novel Method for Drug-Drug Interaction Extraction From Biomedical Literature
The identification of Drug-Drug Interactions (DDIs) is crucial for optimizing patient treatment and avoiding adverse reactions. With the rapid growth of biomedical literature, manual screening for DDIs has become impractical. Hence, the demand for automated DDI extraction methods is continuously inc...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.134167-134184 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-223cae791980254a9b4eba5b4bb6f82ddd58d00f92ec47a5f24714aa3de19e9f3 |
container_end_page | 134184 |
container_issue | |
container_start_page | 134167 |
container_title | IEEE access |
container_volume | 12 |
creator | Jia, Yaxun Yuan, Zhu Wang, Haoyang Gong, Yunchao Yang, Haixiang Xiang, Zuo-Lin |
description | The identification of Drug-Drug Interactions (DDIs) is crucial for optimizing patient treatment and avoiding adverse reactions. With the rapid growth of biomedical literature, manual screening for DDIs has become impractical. Hence, the demand for automated DDI extraction methods is continuously increasing. Currently, although many methods have been proposed, feature supplementation and the latest GCN-based methods still face the problem of being unable to effectively extract key information. In this paper, we propose BBL-GAT, a novel method combining BioBERT-BiLSTM and Graph Attention Network (GAT), to extract DDIs from biomedical literature. BioBERT is employed for its ability to capture the semantic relationships between complex medical terms and drug names. BiLSTM is utilized to handle bidirectional contextual information, which is essential for understanding the context of drug-disease relationships. GAT dynamically learns the significance of drug nodes in different interactions through attention mechanisms, enhancing the precision of relationship extraction. We evaluated BBL-GAT on the DDI Extraction 2013 dataset and compared it with other popular DDI extraction methods. The experimental results demonstrate that BBL-GAT achieves an precision of 81.76%, a recall of 84.38%, and an F1-score of 82.47%, illustrating its effectiveness and superiority in DDI relationship extraction tasks. |
doi_str_mv | 10.1109/ACCESS.2024.3462101 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3112224034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10681076</ieee_id><doaj_id>oai_doaj_org_article_6698bf21a7134a8cadc3df5b6779d155</doaj_id><sourcerecordid>3112224034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-223cae791980254a9b4eba5b4bb6f82ddd58d00f92ec47a5f24714aa3de19e9f3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOAL4GCJc4rfibmloS2VChxaxNFy7DWkamtwUgR_T0oKYg-7o9XM7EqTJBcEDwjB6rooy9F8PqCY8gHjkhJMDpITSqRKmWDy8B8-Ts6bZom7yruVyE6S5-Fwlk6KxQ0q0EP4gBW6h_Y1OORDRLdx-5LuGppuWojGtnXYoNFn-wvHMazRsA5rcLU1KzSrd7R2G-EsOfJm1cD5fp4mT-PRorxLZ4-TaVnMUktz1aaUMmsgU0TlmApuVMWhMqLiVSV9Tp1zIncYe0XB8swIT3lGuDHMAVGgPDtNpr2vC2ap32K9NvFLB1Prn0WIL9rEtrYr0FKqvPKUmIwwbnJrnGXOi0pmmXJEiM7rqvd6i-F9C02rl2EbN937mhFCKeWY8Y7FepaNoWki-L-rBOtdILoPRO8C0ftAOtVlr6oB4J9C5gRnkn0DHhOFdg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112224034</pqid></control><display><type>article</type><title>BBL-GAT: A Novel Method for Drug-Drug Interaction Extraction From Biomedical Literature</title><source>IEEE Open Access Journals</source><creator>Jia, Yaxun ; Yuan, Zhu ; Wang, Haoyang ; Gong, Yunchao ; Yang, Haixiang ; Xiang, Zuo-Lin</creator><creatorcontrib>Jia, Yaxun ; Yuan, Zhu ; Wang, Haoyang ; Gong, Yunchao ; Yang, Haixiang ; Xiang, Zuo-Lin</creatorcontrib><description>The identification of Drug-Drug Interactions (DDIs) is crucial for optimizing patient treatment and avoiding adverse reactions. With the rapid growth of biomedical literature, manual screening for DDIs has become impractical. Hence, the demand for automated DDI extraction methods is continuously increasing. Currently, although many methods have been proposed, feature supplementation and the latest GCN-based methods still face the problem of being unable to effectively extract key information. In this paper, we propose BBL-GAT, a novel method combining BioBERT-BiLSTM and Graph Attention Network (GAT), to extract DDIs from biomedical literature. BioBERT is employed for its ability to capture the semantic relationships between complex medical terms and drug names. BiLSTM is utilized to handle bidirectional contextual information, which is essential for understanding the context of drug-disease relationships. GAT dynamically learns the significance of drug nodes in different interactions through attention mechanisms, enhancing the precision of relationship extraction. We evaluated BBL-GAT on the DDI Extraction 2013 dataset and compared it with other popular DDI extraction methods. The experimental results demonstrate that BBL-GAT achieves an precision of 81.76%, a recall of 84.38%, and an F1-score of 82.47%, illustrating its effectiveness and superiority in DDI relationship extraction tasks.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3462101</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attention ; Attention mechanisms ; BiLSTM ; BioBERT ; Biological system modeling ; Deep learning ; Drug-drug interactions ; Drugs ; Feature extraction ; GAT ; Long short term memory ; Recurrent neural networks ; Semantics</subject><ispartof>IEEE access, 2024, Vol.12, p.134167-134184</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-223cae791980254a9b4eba5b4bb6f82ddd58d00f92ec47a5f24714aa3de19e9f3</cites><orcidid>0000-0001-5808-4997 ; 0000-0003-4380-5311 ; 0000-0002-5725-842X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10681076$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jia, Yaxun</creatorcontrib><creatorcontrib>Yuan, Zhu</creatorcontrib><creatorcontrib>Wang, Haoyang</creatorcontrib><creatorcontrib>Gong, Yunchao</creatorcontrib><creatorcontrib>Yang, Haixiang</creatorcontrib><creatorcontrib>Xiang, Zuo-Lin</creatorcontrib><title>BBL-GAT: A Novel Method for Drug-Drug Interaction Extraction From Biomedical Literature</title><title>IEEE access</title><addtitle>Access</addtitle><description>The identification of Drug-Drug Interactions (DDIs) is crucial for optimizing patient treatment and avoiding adverse reactions. With the rapid growth of biomedical literature, manual screening for DDIs has become impractical. Hence, the demand for automated DDI extraction methods is continuously increasing. Currently, although many methods have been proposed, feature supplementation and the latest GCN-based methods still face the problem of being unable to effectively extract key information. In this paper, we propose BBL-GAT, a novel method combining BioBERT-BiLSTM and Graph Attention Network (GAT), to extract DDIs from biomedical literature. BioBERT is employed for its ability to capture the semantic relationships between complex medical terms and drug names. BiLSTM is utilized to handle bidirectional contextual information, which is essential for understanding the context of drug-disease relationships. GAT dynamically learns the significance of drug nodes in different interactions through attention mechanisms, enhancing the precision of relationship extraction. We evaluated BBL-GAT on the DDI Extraction 2013 dataset and compared it with other popular DDI extraction methods. The experimental results demonstrate that BBL-GAT achieves an precision of 81.76%, a recall of 84.38%, and an F1-score of 82.47%, illustrating its effectiveness and superiority in DDI relationship extraction tasks.</description><subject>Attention</subject><subject>Attention mechanisms</subject><subject>BiLSTM</subject><subject>BioBERT</subject><subject>Biological system modeling</subject><subject>Deep learning</subject><subject>Drug-drug interactions</subject><subject>Drugs</subject><subject>Feature extraction</subject><subject>GAT</subject><subject>Long short term memory</subject><subject>Recurrent neural networks</subject><subject>Semantics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOAL4GCJc4rfibmloS2VChxaxNFy7DWkamtwUgR_T0oKYg-7o9XM7EqTJBcEDwjB6rooy9F8PqCY8gHjkhJMDpITSqRKmWDy8B8-Ts6bZom7yruVyE6S5-Fwlk6KxQ0q0EP4gBW6h_Y1OORDRLdx-5LuGppuWojGtnXYoNFn-wvHMazRsA5rcLU1KzSrd7R2G-EsOfJm1cD5fp4mT-PRorxLZ4-TaVnMUktz1aaUMmsgU0TlmApuVMWhMqLiVSV9Tp1zIncYe0XB8swIT3lGuDHMAVGgPDtNpr2vC2ap32K9NvFLB1Prn0WIL9rEtrYr0FKqvPKUmIwwbnJrnGXOi0pmmXJEiM7rqvd6i-F9C02rl2EbN937mhFCKeWY8Y7FepaNoWki-L-rBOtdILoPRO8C0ftAOtVlr6oB4J9C5gRnkn0DHhOFdg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jia, Yaxun</creator><creator>Yuan, Zhu</creator><creator>Wang, Haoyang</creator><creator>Gong, Yunchao</creator><creator>Yang, Haixiang</creator><creator>Xiang, Zuo-Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5808-4997</orcidid><orcidid>https://orcid.org/0000-0003-4380-5311</orcidid><orcidid>https://orcid.org/0000-0002-5725-842X</orcidid></search><sort><creationdate>2024</creationdate><title>BBL-GAT: A Novel Method for Drug-Drug Interaction Extraction From Biomedical Literature</title><author>Jia, Yaxun ; Yuan, Zhu ; Wang, Haoyang ; Gong, Yunchao ; Yang, Haixiang ; Xiang, Zuo-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-223cae791980254a9b4eba5b4bb6f82ddd58d00f92ec47a5f24714aa3de19e9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attention</topic><topic>Attention mechanisms</topic><topic>BiLSTM</topic><topic>BioBERT</topic><topic>Biological system modeling</topic><topic>Deep learning</topic><topic>Drug-drug interactions</topic><topic>Drugs</topic><topic>Feature extraction</topic><topic>GAT</topic><topic>Long short term memory</topic><topic>Recurrent neural networks</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Yaxun</creatorcontrib><creatorcontrib>Yuan, Zhu</creatorcontrib><creatorcontrib>Wang, Haoyang</creatorcontrib><creatorcontrib>Gong, Yunchao</creatorcontrib><creatorcontrib>Yang, Haixiang</creatorcontrib><creatorcontrib>Xiang, Zuo-Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Yaxun</au><au>Yuan, Zhu</au><au>Wang, Haoyang</au><au>Gong, Yunchao</au><au>Yang, Haixiang</au><au>Xiang, Zuo-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BBL-GAT: A Novel Method for Drug-Drug Interaction Extraction From Biomedical Literature</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>134167</spage><epage>134184</epage><pages>134167-134184</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The identification of Drug-Drug Interactions (DDIs) is crucial for optimizing patient treatment and avoiding adverse reactions. With the rapid growth of biomedical literature, manual screening for DDIs has become impractical. Hence, the demand for automated DDI extraction methods is continuously increasing. Currently, although many methods have been proposed, feature supplementation and the latest GCN-based methods still face the problem of being unable to effectively extract key information. In this paper, we propose BBL-GAT, a novel method combining BioBERT-BiLSTM and Graph Attention Network (GAT), to extract DDIs from biomedical literature. BioBERT is employed for its ability to capture the semantic relationships between complex medical terms and drug names. BiLSTM is utilized to handle bidirectional contextual information, which is essential for understanding the context of drug-disease relationships. GAT dynamically learns the significance of drug nodes in different interactions through attention mechanisms, enhancing the precision of relationship extraction. We evaluated BBL-GAT on the DDI Extraction 2013 dataset and compared it with other popular DDI extraction methods. The experimental results demonstrate that BBL-GAT achieves an precision of 81.76%, a recall of 84.38%, and an F1-score of 82.47%, illustrating its effectiveness and superiority in DDI relationship extraction tasks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3462101</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5808-4997</orcidid><orcidid>https://orcid.org/0000-0003-4380-5311</orcidid><orcidid>https://orcid.org/0000-0002-5725-842X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.134167-134184 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3112224034 |
source | IEEE Open Access Journals |
subjects | Attention Attention mechanisms BiLSTM BioBERT Biological system modeling Deep learning Drug-drug interactions Drugs Feature extraction GAT Long short term memory Recurrent neural networks Semantics |
title | BBL-GAT: A Novel Method for Drug-Drug Interaction Extraction From Biomedical Literature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BBL-GAT:%20A%20Novel%20Method%20for%20Drug-Drug%20Interaction%20Extraction%20From%20Biomedical%20Literature&rft.jtitle=IEEE%20access&rft.au=Jia,%20Yaxun&rft.date=2024&rft.volume=12&rft.spage=134167&rft.epage=134184&rft.pages=134167-134184&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3462101&rft_dat=%3Cproquest_doaj_%3E3112224034%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-223cae791980254a9b4eba5b4bb6f82ddd58d00f92ec47a5f24714aa3de19e9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112224034&rft_id=info:pmid/&rft_ieee_id=10681076&rfr_iscdi=true |