Loading…

PDE-constrained Optimization for Electroencephalographic Source Reconstruction

This paper introduces a novel numerical method for the inverse problem of electroencephalography (EEG). We pose the inverse EEG problem as an optimal control (OC) problem for Poisson’s equation. The optimality conditions lead to a variational system of differential equations. It is discretized direc...

Full description

Saved in:
Bibliographic Details
Published in:Lobachevskii journal of mathematics 2024, Vol.45 (6), p.2875-2894
Main Authors: Malovichko, M. S., Yavich, N. B., Razorenova, A. M., Golubev, V. I., Koshev, N. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1566-ccdb2a92744cdd777993dd723cf1809f5955d222ca780051a387336645c94f0d3
container_end_page 2894
container_issue 6
container_start_page 2875
container_title Lobachevskii journal of mathematics
container_volume 45
creator Malovichko, M. S.
Yavich, N. B.
Razorenova, A. M.
Golubev, V. I.
Koshev, N. A.
description This paper introduces a novel numerical method for the inverse problem of electroencephalography (EEG). We pose the inverse EEG problem as an optimal control (OC) problem for Poisson’s equation. The optimality conditions lead to a variational system of differential equations. It is discretized directly in finite-element spaces leading to a system of linear equations with a sparse Karush–Kuhn–Tucker matrix. The method uses finite-element discretization and thus can handle MRI-based meshes of almost arbitrary complexity. It extends the well-known mixed quasi-reversibility method (mQRM) in that pointwise noisy data explicitly appear in the formulation making unnecessary tedious interpolation of the noisy data from the electrodes to the scalp surface. The resulting algebraic problem differs considerably from that obtained in the mixed quasi-reversibility, but only slightly larger. The algorithm does not require the formation of the lead-field matrix, which can be beneficial for large matrices. Our tests, both with spherical and MRI-based meshes, demonstrates that the method accurately reconstructs cortical activity.
doi_str_mv 10.1134/S1995080224603266
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3112496126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112496126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1566-ccdb2a92744cdd777993dd723cf1809f5955d222ca780051a387336645c94f0d3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLeA5-jO_kv2KLVWoVixeg7rZNOmpNm4mx7007shggfxNAPv_d4Mj5BLoNcAXNysQWtJc8qYUJQzpY7IBHLIU60VO457lNNBPyVnIexoNCqlJuTp-W6eomtD703d2jJZdX29r79MX7s2qZxP5o3F3jvbou22pnEbb7ptjcnaHTza5MWO9AEH4pycVKYJ9uJnTsnb_fx19pAuV4vH2e0yRZBKpYjlOzOaZUJgWWZZpjWPk3GsIKe6klrKkjGGJssplWB4nnGulJCoRUVLPiVXY27n3cfBhr7YxXfaeLLgAExoBUxFF4wu9C4Eb6ui8_Xe-M8CaDHUVvypLTJsZEL0thvrf5P_h74BLdxuew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112496126</pqid></control><display><type>article</type><title>PDE-constrained Optimization for Electroencephalographic Source Reconstruction</title><source>Springer Link</source><creator>Malovichko, M. S. ; Yavich, N. B. ; Razorenova, A. M. ; Golubev, V. I. ; Koshev, N. A.</creator><creatorcontrib>Malovichko, M. S. ; Yavich, N. B. ; Razorenova, A. M. ; Golubev, V. I. ; Koshev, N. A.</creatorcontrib><description>This paper introduces a novel numerical method for the inverse problem of electroencephalography (EEG). We pose the inverse EEG problem as an optimal control (OC) problem for Poisson’s equation. The optimality conditions lead to a variational system of differential equations. It is discretized directly in finite-element spaces leading to a system of linear equations with a sparse Karush–Kuhn–Tucker matrix. The method uses finite-element discretization and thus can handle MRI-based meshes of almost arbitrary complexity. It extends the well-known mixed quasi-reversibility method (mQRM) in that pointwise noisy data explicitly appear in the formulation making unnecessary tedious interpolation of the noisy data from the electrodes to the scalp surface. The resulting algebraic problem differs considerably from that obtained in the mixed quasi-reversibility, but only slightly larger. The algorithm does not require the formation of the lead-field matrix, which can be beneficial for large matrices. Our tests, both with spherical and MRI-based meshes, demonstrates that the method accurately reconstructs cortical activity.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080224603266</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Algorithms ; Analysis ; Differential equations ; Discretization ; Electroencephalography ; Geometry ; Inverse problems ; Linear equations ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Numerical methods ; Optimal control ; Optimization ; Poisson equation ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2024, Vol.45 (6), p.2875-2894</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1566-ccdb2a92744cdd777993dd723cf1809f5955d222ca780051a387336645c94f0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Malovichko, M. S.</creatorcontrib><creatorcontrib>Yavich, N. B.</creatorcontrib><creatorcontrib>Razorenova, A. M.</creatorcontrib><creatorcontrib>Golubev, V. I.</creatorcontrib><creatorcontrib>Koshev, N. A.</creatorcontrib><title>PDE-constrained Optimization for Electroencephalographic Source Reconstruction</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>This paper introduces a novel numerical method for the inverse problem of electroencephalography (EEG). We pose the inverse EEG problem as an optimal control (OC) problem for Poisson’s equation. The optimality conditions lead to a variational system of differential equations. It is discretized directly in finite-element spaces leading to a system of linear equations with a sparse Karush–Kuhn–Tucker matrix. The method uses finite-element discretization and thus can handle MRI-based meshes of almost arbitrary complexity. It extends the well-known mixed quasi-reversibility method (mQRM) in that pointwise noisy data explicitly appear in the formulation making unnecessary tedious interpolation of the noisy data from the electrodes to the scalp surface. The resulting algebraic problem differs considerably from that obtained in the mixed quasi-reversibility, but only slightly larger. The algorithm does not require the formation of the lead-field matrix, which can be beneficial for large matrices. Our tests, both with spherical and MRI-based meshes, demonstrates that the method accurately reconstructs cortical activity.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Differential equations</subject><subject>Discretization</subject><subject>Electroencephalography</subject><subject>Geometry</subject><subject>Inverse problems</subject><subject>Linear equations</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical methods</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Poisson equation</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLeA5-jO_kv2KLVWoVixeg7rZNOmpNm4mx7007shggfxNAPv_d4Mj5BLoNcAXNysQWtJc8qYUJQzpY7IBHLIU60VO457lNNBPyVnIexoNCqlJuTp-W6eomtD703d2jJZdX29r79MX7s2qZxP5o3F3jvbou22pnEbb7ptjcnaHTza5MWO9AEH4pycVKYJ9uJnTsnb_fx19pAuV4vH2e0yRZBKpYjlOzOaZUJgWWZZpjWPk3GsIKe6klrKkjGGJssplWB4nnGulJCoRUVLPiVXY27n3cfBhr7YxXfaeLLgAExoBUxFF4wu9C4Eb6ui8_Xe-M8CaDHUVvypLTJsZEL0thvrf5P_h74BLdxuew</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Malovichko, M. S.</creator><creator>Yavich, N. B.</creator><creator>Razorenova, A. M.</creator><creator>Golubev, V. I.</creator><creator>Koshev, N. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>PDE-constrained Optimization for Electroencephalographic Source Reconstruction</title><author>Malovichko, M. S. ; Yavich, N. B. ; Razorenova, A. M. ; Golubev, V. I. ; Koshev, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1566-ccdb2a92744cdd777993dd723cf1809f5955d222ca780051a387336645c94f0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Differential equations</topic><topic>Discretization</topic><topic>Electroencephalography</topic><topic>Geometry</topic><topic>Inverse problems</topic><topic>Linear equations</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical methods</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Poisson equation</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malovichko, M. S.</creatorcontrib><creatorcontrib>Yavich, N. B.</creatorcontrib><creatorcontrib>Razorenova, A. M.</creatorcontrib><creatorcontrib>Golubev, V. I.</creatorcontrib><creatorcontrib>Koshev, N. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malovichko, M. S.</au><au>Yavich, N. B.</au><au>Razorenova, A. M.</au><au>Golubev, V. I.</au><au>Koshev, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PDE-constrained Optimization for Electroencephalographic Source Reconstruction</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2024</date><risdate>2024</risdate><volume>45</volume><issue>6</issue><spage>2875</spage><epage>2894</epage><pages>2875-2894</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>This paper introduces a novel numerical method for the inverse problem of electroencephalography (EEG). We pose the inverse EEG problem as an optimal control (OC) problem for Poisson’s equation. The optimality conditions lead to a variational system of differential equations. It is discretized directly in finite-element spaces leading to a system of linear equations with a sparse Karush–Kuhn–Tucker matrix. The method uses finite-element discretization and thus can handle MRI-based meshes of almost arbitrary complexity. It extends the well-known mixed quasi-reversibility method (mQRM) in that pointwise noisy data explicitly appear in the formulation making unnecessary tedious interpolation of the noisy data from the electrodes to the scalp surface. The resulting algebraic problem differs considerably from that obtained in the mixed quasi-reversibility, but only slightly larger. The algorithm does not require the formation of the lead-field matrix, which can be beneficial for large matrices. Our tests, both with spherical and MRI-based meshes, demonstrates that the method accurately reconstructs cortical activity.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080224603266</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2024, Vol.45 (6), p.2875-2894
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_3112496126
source Springer Link
subjects Algebra
Algorithms
Analysis
Differential equations
Discretization
Electroencephalography
Geometry
Inverse problems
Linear equations
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Numerical methods
Optimal control
Optimization
Poisson equation
Probability Theory and Stochastic Processes
title PDE-constrained Optimization for Electroencephalographic Source Reconstruction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PDE-constrained%20Optimization%20for%20Electroencephalographic%20Source%20Reconstruction&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Malovichko,%20M.%20S.&rft.date=2024&rft.volume=45&rft.issue=6&rft.spage=2875&rft.epage=2894&rft.pages=2875-2894&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080224603266&rft_dat=%3Cproquest_cross%3E3112496126%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1566-ccdb2a92744cdd777993dd723cf1809f5955d222ca780051a387336645c94f0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112496126&rft_id=info:pmid/&rfr_iscdi=true