Loading…
PDE-constrained Optimization for Electroencephalographic Source Reconstruction
This paper introduces a novel numerical method for the inverse problem of electroencephalography (EEG). We pose the inverse EEG problem as an optimal control (OC) problem for Poisson’s equation. The optimality conditions lead to a variational system of differential equations. It is discretized direc...
Saved in:
Published in: | Lobachevskii journal of mathematics 2024, Vol.45 (6), p.2875-2894 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1566-ccdb2a92744cdd777993dd723cf1809f5955d222ca780051a387336645c94f0d3 |
container_end_page | 2894 |
container_issue | 6 |
container_start_page | 2875 |
container_title | Lobachevskii journal of mathematics |
container_volume | 45 |
creator | Malovichko, M. S. Yavich, N. B. Razorenova, A. M. Golubev, V. I. Koshev, N. A. |
description | This paper introduces a novel numerical method for the inverse problem of electroencephalography (EEG). We pose the inverse EEG problem as an optimal control (OC) problem for Poisson’s equation. The optimality conditions lead to a variational system of differential equations. It is discretized directly in finite-element spaces leading to a system of linear equations with a sparse Karush–Kuhn–Tucker matrix. The method uses finite-element discretization and thus can handle MRI-based meshes of almost arbitrary complexity. It extends the well-known mixed quasi-reversibility method (mQRM) in that pointwise noisy data explicitly appear in the formulation making unnecessary tedious interpolation of the noisy data from the electrodes to the scalp surface. The resulting algebraic problem differs considerably from that obtained in the mixed quasi-reversibility, but only slightly larger. The algorithm does not require the formation of the lead-field matrix, which can be beneficial for large matrices. Our tests, both with spherical and MRI-based meshes, demonstrates that the method accurately reconstructs cortical activity. |
doi_str_mv | 10.1134/S1995080224603266 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3112496126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112496126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1566-ccdb2a92744cdd777993dd723cf1809f5955d222ca780051a387336645c94f0d3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLeA5-jO_kv2KLVWoVixeg7rZNOmpNm4mx7007shggfxNAPv_d4Mj5BLoNcAXNysQWtJc8qYUJQzpY7IBHLIU60VO457lNNBPyVnIexoNCqlJuTp-W6eomtD703d2jJZdX29r79MX7s2qZxP5o3F3jvbou22pnEbb7ptjcnaHTza5MWO9AEH4pycVKYJ9uJnTsnb_fx19pAuV4vH2e0yRZBKpYjlOzOaZUJgWWZZpjWPk3GsIKe6klrKkjGGJssplWB4nnGulJCoRUVLPiVXY27n3cfBhr7YxXfaeLLgAExoBUxFF4wu9C4Eb6ui8_Xe-M8CaDHUVvypLTJsZEL0thvrf5P_h74BLdxuew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112496126</pqid></control><display><type>article</type><title>PDE-constrained Optimization for Electroencephalographic Source Reconstruction</title><source>Springer Link</source><creator>Malovichko, M. S. ; Yavich, N. B. ; Razorenova, A. M. ; Golubev, V. I. ; Koshev, N. A.</creator><creatorcontrib>Malovichko, M. S. ; Yavich, N. B. ; Razorenova, A. M. ; Golubev, V. I. ; Koshev, N. A.</creatorcontrib><description>This paper introduces a novel numerical method for the inverse problem of electroencephalography (EEG). We pose the inverse EEG problem as an optimal control (OC) problem for Poisson’s equation. The optimality conditions lead to a variational system of differential equations. It is discretized directly in finite-element spaces leading to a system of linear equations with a sparse Karush–Kuhn–Tucker matrix. The method uses finite-element discretization and thus can handle MRI-based meshes of almost arbitrary complexity. It extends the well-known mixed quasi-reversibility method (mQRM) in that pointwise noisy data explicitly appear in the formulation making unnecessary tedious interpolation of the noisy data from the electrodes to the scalp surface. The resulting algebraic problem differs considerably from that obtained in the mixed quasi-reversibility, but only slightly larger. The algorithm does not require the formation of the lead-field matrix, which can be beneficial for large matrices. Our tests, both with spherical and MRI-based meshes, demonstrates that the method accurately reconstructs cortical activity.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080224603266</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Algorithms ; Analysis ; Differential equations ; Discretization ; Electroencephalography ; Geometry ; Inverse problems ; Linear equations ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Numerical methods ; Optimal control ; Optimization ; Poisson equation ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2024, Vol.45 (6), p.2875-2894</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1566-ccdb2a92744cdd777993dd723cf1809f5955d222ca780051a387336645c94f0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Malovichko, M. S.</creatorcontrib><creatorcontrib>Yavich, N. B.</creatorcontrib><creatorcontrib>Razorenova, A. M.</creatorcontrib><creatorcontrib>Golubev, V. I.</creatorcontrib><creatorcontrib>Koshev, N. A.</creatorcontrib><title>PDE-constrained Optimization for Electroencephalographic Source Reconstruction</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>This paper introduces a novel numerical method for the inverse problem of electroencephalography (EEG). We pose the inverse EEG problem as an optimal control (OC) problem for Poisson’s equation. The optimality conditions lead to a variational system of differential equations. It is discretized directly in finite-element spaces leading to a system of linear equations with a sparse Karush–Kuhn–Tucker matrix. The method uses finite-element discretization and thus can handle MRI-based meshes of almost arbitrary complexity. It extends the well-known mixed quasi-reversibility method (mQRM) in that pointwise noisy data explicitly appear in the formulation making unnecessary tedious interpolation of the noisy data from the electrodes to the scalp surface. The resulting algebraic problem differs considerably from that obtained in the mixed quasi-reversibility, but only slightly larger. The algorithm does not require the formation of the lead-field matrix, which can be beneficial for large matrices. Our tests, both with spherical and MRI-based meshes, demonstrates that the method accurately reconstructs cortical activity.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Differential equations</subject><subject>Discretization</subject><subject>Electroencephalography</subject><subject>Geometry</subject><subject>Inverse problems</subject><subject>Linear equations</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical methods</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Poisson equation</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLeA5-jO_kv2KLVWoVixeg7rZNOmpNm4mx7007shggfxNAPv_d4Mj5BLoNcAXNysQWtJc8qYUJQzpY7IBHLIU60VO457lNNBPyVnIexoNCqlJuTp-W6eomtD703d2jJZdX29r79MX7s2qZxP5o3F3jvbou22pnEbb7ptjcnaHTza5MWO9AEH4pycVKYJ9uJnTsnb_fx19pAuV4vH2e0yRZBKpYjlOzOaZUJgWWZZpjWPk3GsIKe6klrKkjGGJssplWB4nnGulJCoRUVLPiVXY27n3cfBhr7YxXfaeLLgAExoBUxFF4wu9C4Eb6ui8_Xe-M8CaDHUVvypLTJsZEL0thvrf5P_h74BLdxuew</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Malovichko, M. S.</creator><creator>Yavich, N. B.</creator><creator>Razorenova, A. M.</creator><creator>Golubev, V. I.</creator><creator>Koshev, N. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>PDE-constrained Optimization for Electroencephalographic Source Reconstruction</title><author>Malovichko, M. S. ; Yavich, N. B. ; Razorenova, A. M. ; Golubev, V. I. ; Koshev, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1566-ccdb2a92744cdd777993dd723cf1809f5955d222ca780051a387336645c94f0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Differential equations</topic><topic>Discretization</topic><topic>Electroencephalography</topic><topic>Geometry</topic><topic>Inverse problems</topic><topic>Linear equations</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical methods</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Poisson equation</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malovichko, M. S.</creatorcontrib><creatorcontrib>Yavich, N. B.</creatorcontrib><creatorcontrib>Razorenova, A. M.</creatorcontrib><creatorcontrib>Golubev, V. I.</creatorcontrib><creatorcontrib>Koshev, N. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malovichko, M. S.</au><au>Yavich, N. B.</au><au>Razorenova, A. M.</au><au>Golubev, V. I.</au><au>Koshev, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PDE-constrained Optimization for Electroencephalographic Source Reconstruction</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2024</date><risdate>2024</risdate><volume>45</volume><issue>6</issue><spage>2875</spage><epage>2894</epage><pages>2875-2894</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>This paper introduces a novel numerical method for the inverse problem of electroencephalography (EEG). We pose the inverse EEG problem as an optimal control (OC) problem for Poisson’s equation. The optimality conditions lead to a variational system of differential equations. It is discretized directly in finite-element spaces leading to a system of linear equations with a sparse Karush–Kuhn–Tucker matrix. The method uses finite-element discretization and thus can handle MRI-based meshes of almost arbitrary complexity. It extends the well-known mixed quasi-reversibility method (mQRM) in that pointwise noisy data explicitly appear in the formulation making unnecessary tedious interpolation of the noisy data from the electrodes to the scalp surface. The resulting algebraic problem differs considerably from that obtained in the mixed quasi-reversibility, but only slightly larger. The algorithm does not require the formation of the lead-field matrix, which can be beneficial for large matrices. Our tests, both with spherical and MRI-based meshes, demonstrates that the method accurately reconstructs cortical activity.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080224603266</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2024, Vol.45 (6), p.2875-2894 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_3112496126 |
source | Springer Link |
subjects | Algebra Algorithms Analysis Differential equations Discretization Electroencephalography Geometry Inverse problems Linear equations Mathematical Logic and Foundations Mathematics Mathematics and Statistics Numerical methods Optimal control Optimization Poisson equation Probability Theory and Stochastic Processes |
title | PDE-constrained Optimization for Electroencephalographic Source Reconstruction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PDE-constrained%20Optimization%20for%20Electroencephalographic%20Source%20Reconstruction&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Malovichko,%20M.%20S.&rft.date=2024&rft.volume=45&rft.issue=6&rft.spage=2875&rft.epage=2894&rft.pages=2875-2894&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080224603266&rft_dat=%3Cproquest_cross%3E3112496126%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1566-ccdb2a92744cdd777993dd723cf1809f5955d222ca780051a387336645c94f0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112496126&rft_id=info:pmid/&rfr_iscdi=true |