Loading…
Large Cuts in Hypergraphs via Energy
A simple probabilistic argument shows that every \(r\)-uniform hypergraph with \(m\) edges contains an \(r\)-partite subhypergraph with at least \(\frac{r!}{r^r}m\) edges. The celebrated result of Edwards states that in the case of graphs, that is \(r=2\), the resulting bound \(m/2\) can be improved...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Räty, Eero Tomon, István |
description | A simple probabilistic argument shows that every \(r\)-uniform hypergraph with \(m\) edges contains an \(r\)-partite subhypergraph with at least \(\frac{r!}{r^r}m\) edges. The celebrated result of Edwards states that in the case of graphs, that is \(r=2\), the resulting bound \(m/2\) can be improved to \(m/2+\Omega(m^{1/2})\), and this is sharp. We prove that if \(r\geq 3\), then there is an \(r\)-partite subhypergraph with at least \(\frac{r!}{r^r} m+m^{3/5-o(1)}\) edges. Moreover, if the hypergraph is linear, this can be improved to \(\frac{r!}{r^r} m+m^{3/4-o(1)},\) which is tight up to the \(o(1)\) term. These improve results of Conlon, Fox, Kwan, and Sudakov. Our proof is based on a combination of probabilistic, combinatorial, and linear algebraic techniques, and semidefinite programming. A key part of our argument is relating the energy \(\mathcal{E}(G)\) of a graph \(G\) (i.e. the sum of absolute values of eigenvalues of the adjacency matrix) to its maximum cut. We prove that every \(m\) edge multigraph \(G\) has a cut of size at least \(m/2+\Omega(\frac{\mathcal{E}(G)}{\log m})\), which might be of independent interest. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3112655840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112655840</sourcerecordid><originalsourceid>FETCH-proquest_journals_31126558403</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8UksSk9VcC4tKVbIzFPwqCxILUovSizIKFYoy0xUcM0Dcit5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCre2NDQyMzU1MLEwJg4VQCaMi4n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112655840</pqid></control><display><type>article</type><title>Large Cuts in Hypergraphs via Energy</title><source>Publicly Available Content Database</source><creator>Räty, Eero ; Tomon, István</creator><creatorcontrib>Räty, Eero ; Tomon, István</creatorcontrib><description>A simple probabilistic argument shows that every \(r\)-uniform hypergraph with \(m\) edges contains an \(r\)-partite subhypergraph with at least \(\frac{r!}{r^r}m\) edges. The celebrated result of Edwards states that in the case of graphs, that is \(r=2\), the resulting bound \(m/2\) can be improved to \(m/2+\Omega(m^{1/2})\), and this is sharp. We prove that if \(r\geq 3\), then there is an \(r\)-partite subhypergraph with at least \(\frac{r!}{r^r} m+m^{3/5-o(1)}\) edges. Moreover, if the hypergraph is linear, this can be improved to \(\frac{r!}{r^r} m+m^{3/4-o(1)},\) which is tight up to the \(o(1)\) term. These improve results of Conlon, Fox, Kwan, and Sudakov. Our proof is based on a combination of probabilistic, combinatorial, and linear algebraic techniques, and semidefinite programming. A key part of our argument is relating the energy \(\mathcal{E}(G)\) of a graph \(G\) (i.e. the sum of absolute values of eigenvalues of the adjacency matrix) to its maximum cut. We prove that every \(m\) edge multigraph \(G\) has a cut of size at least \(m/2+\Omega(\frac{\mathcal{E}(G)}{\log m})\), which might be of independent interest.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Eigenvalues ; Graph theory ; Graphs ; Linear algebra ; Semidefinite programming</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3112655840?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25740,36999,44577</link.rule.ids></links><search><creatorcontrib>Räty, Eero</creatorcontrib><creatorcontrib>Tomon, István</creatorcontrib><title>Large Cuts in Hypergraphs via Energy</title><title>arXiv.org</title><description>A simple probabilistic argument shows that every \(r\)-uniform hypergraph with \(m\) edges contains an \(r\)-partite subhypergraph with at least \(\frac{r!}{r^r}m\) edges. The celebrated result of Edwards states that in the case of graphs, that is \(r=2\), the resulting bound \(m/2\) can be improved to \(m/2+\Omega(m^{1/2})\), and this is sharp. We prove that if \(r\geq 3\), then there is an \(r\)-partite subhypergraph with at least \(\frac{r!}{r^r} m+m^{3/5-o(1)}\) edges. Moreover, if the hypergraph is linear, this can be improved to \(\frac{r!}{r^r} m+m^{3/4-o(1)},\) which is tight up to the \(o(1)\) term. These improve results of Conlon, Fox, Kwan, and Sudakov. Our proof is based on a combination of probabilistic, combinatorial, and linear algebraic techniques, and semidefinite programming. A key part of our argument is relating the energy \(\mathcal{E}(G)\) of a graph \(G\) (i.e. the sum of absolute values of eigenvalues of the adjacency matrix) to its maximum cut. We prove that every \(m\) edge multigraph \(G\) has a cut of size at least \(m/2+\Omega(\frac{\mathcal{E}(G)}{\log m})\), which might be of independent interest.</description><subject>Combinatorial analysis</subject><subject>Eigenvalues</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Linear algebra</subject><subject>Semidefinite programming</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8UksSk9VcC4tKVbIzFPwqCxILUovSizIKFYoy0xUcM0Dcit5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCre2NDQyMzU1MLEwJg4VQCaMi4n</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>Räty, Eero</creator><creator>Tomon, István</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241029</creationdate><title>Large Cuts in Hypergraphs via Energy</title><author>Räty, Eero ; Tomon, István</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31126558403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorial analysis</topic><topic>Eigenvalues</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Linear algebra</topic><topic>Semidefinite programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Räty, Eero</creatorcontrib><creatorcontrib>Tomon, István</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Räty, Eero</au><au>Tomon, István</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Large Cuts in Hypergraphs via Energy</atitle><jtitle>arXiv.org</jtitle><date>2024-10-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A simple probabilistic argument shows that every \(r\)-uniform hypergraph with \(m\) edges contains an \(r\)-partite subhypergraph with at least \(\frac{r!}{r^r}m\) edges. The celebrated result of Edwards states that in the case of graphs, that is \(r=2\), the resulting bound \(m/2\) can be improved to \(m/2+\Omega(m^{1/2})\), and this is sharp. We prove that if \(r\geq 3\), then there is an \(r\)-partite subhypergraph with at least \(\frac{r!}{r^r} m+m^{3/5-o(1)}\) edges. Moreover, if the hypergraph is linear, this can be improved to \(\frac{r!}{r^r} m+m^{3/4-o(1)},\) which is tight up to the \(o(1)\) term. These improve results of Conlon, Fox, Kwan, and Sudakov. Our proof is based on a combination of probabilistic, combinatorial, and linear algebraic techniques, and semidefinite programming. A key part of our argument is relating the energy \(\mathcal{E}(G)\) of a graph \(G\) (i.e. the sum of absolute values of eigenvalues of the adjacency matrix) to its maximum cut. We prove that every \(m\) edge multigraph \(G\) has a cut of size at least \(m/2+\Omega(\frac{\mathcal{E}(G)}{\log m})\), which might be of independent interest.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3112655840 |
source | Publicly Available Content Database |
subjects | Combinatorial analysis Eigenvalues Graph theory Graphs Linear algebra Semidefinite programming |
title | Large Cuts in Hypergraphs via Energy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Large%20Cuts%20in%20Hypergraphs%20via%20Energy&rft.jtitle=arXiv.org&rft.au=R%C3%A4ty,%20Eero&rft.date=2024-10-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3112655840%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31126558403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112655840&rft_id=info:pmid/&rfr_iscdi=true |