Loading…

Korteweg de-Vries Dynamics at the Edge of Laughlin State

In this work, we show that the edge dynamics of the Laughlin state in the weakly nonlinear regime is governed by the Korteweg-de Vries (KdV) equation. Our starting point is the Chern-Simons-Ginzburg-Landau theory in the lower half-plane, where the effective edge dynamics are encoded in anomaly-compa...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Monteiro, Gustavo M, Ganeshan, Sriram
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Monteiro, Gustavo M
Ganeshan, Sriram
description In this work, we show that the edge dynamics of the Laughlin state in the weakly nonlinear regime is governed by the Korteweg-de Vries (KdV) equation. Our starting point is the Chern-Simons-Ginzburg-Landau theory in the lower half-plane, where the effective edge dynamics are encoded in anomaly-compatible boundary conditions. The saddle point bulk dynamics and the corresponding boundary conditions of this action can be reformulated as two-dimensional compressible fluid dynamic equations, subject to a quantum Hall constraint that links the superfluid vorticity to its density fluctuations. The boundary conditions in this hydrodynamic framework consist of no-penetration and no-stress conditions. We then apply the method of multiple scales to this hydrodynamic system and derive the KdV equation for the edge dynamics in the weakly nonlinear regime. By employing the Hamiltonian framework for the KdV equation, we show that we can recover the chiral Luttinger liquid theory in the linearized regime and provide a pathway for canonically quantizing the edge dynamics in the weakly non-linear limit.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3112657937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112657937</sourcerecordid><originalsourceid>FETCH-proquest_journals_31126579373</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8M4vKkktT01XSEnVDSvKTC1WcKnMS8zNTC5WSCxRKMlIVXBNSU9VyE9T8EksTc_IycxTCC5JLEnlYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4Y0NDIzNTc0tjc2PiVAEA2hI1KQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112657937</pqid></control><display><type>article</type><title>Korteweg de-Vries Dynamics at the Edge of Laughlin State</title><source>Publicly Available Content Database</source><creator>Monteiro, Gustavo M ; Ganeshan, Sriram</creator><creatorcontrib>Monteiro, Gustavo M ; Ganeshan, Sriram</creatorcontrib><description>In this work, we show that the edge dynamics of the Laughlin state in the weakly nonlinear regime is governed by the Korteweg-de Vries (KdV) equation. Our starting point is the Chern-Simons-Ginzburg-Landau theory in the lower half-plane, where the effective edge dynamics are encoded in anomaly-compatible boundary conditions. The saddle point bulk dynamics and the corresponding boundary conditions of this action can be reformulated as two-dimensional compressible fluid dynamic equations, subject to a quantum Hall constraint that links the superfluid vorticity to its density fluctuations. The boundary conditions in this hydrodynamic framework consist of no-penetration and no-stress conditions. We then apply the method of multiple scales to this hydrodynamic system and derive the KdV equation for the edge dynamics in the weakly nonlinear regime. By employing the Hamiltonian framework for the KdV equation, we show that we can recover the chiral Luttinger liquid theory in the linearized regime and provide a pathway for canonically quantizing the edge dynamics in the weakly non-linear limit.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Bulk density ; Compressible fluids ; Half planes ; Korteweg-Devries equation ; Multiscale analysis ; Nonlinear dynamics ; Saddle points ; Superfluidity ; Vorticity</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3112657937?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Monteiro, Gustavo M</creatorcontrib><creatorcontrib>Ganeshan, Sriram</creatorcontrib><title>Korteweg de-Vries Dynamics at the Edge of Laughlin State</title><title>arXiv.org</title><description>In this work, we show that the edge dynamics of the Laughlin state in the weakly nonlinear regime is governed by the Korteweg-de Vries (KdV) equation. Our starting point is the Chern-Simons-Ginzburg-Landau theory in the lower half-plane, where the effective edge dynamics are encoded in anomaly-compatible boundary conditions. The saddle point bulk dynamics and the corresponding boundary conditions of this action can be reformulated as two-dimensional compressible fluid dynamic equations, subject to a quantum Hall constraint that links the superfluid vorticity to its density fluctuations. The boundary conditions in this hydrodynamic framework consist of no-penetration and no-stress conditions. We then apply the method of multiple scales to this hydrodynamic system and derive the KdV equation for the edge dynamics in the weakly nonlinear regime. By employing the Hamiltonian framework for the KdV equation, we show that we can recover the chiral Luttinger liquid theory in the linearized regime and provide a pathway for canonically quantizing the edge dynamics in the weakly non-linear limit.</description><subject>Boundary conditions</subject><subject>Bulk density</subject><subject>Compressible fluids</subject><subject>Half planes</subject><subject>Korteweg-Devries equation</subject><subject>Multiscale analysis</subject><subject>Nonlinear dynamics</subject><subject>Saddle points</subject><subject>Superfluidity</subject><subject>Vorticity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8M4vKkktT01XSEnVDSvKTC1WcKnMS8zNTC5WSCxRKMlIVXBNSU9VyE9T8EksTc_IycxTCC5JLEnlYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4Y0NDIzNTc0tjc2PiVAEA2hI1KQ</recordid><startdate>20241002</startdate><enddate>20241002</enddate><creator>Monteiro, Gustavo M</creator><creator>Ganeshan, Sriram</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241002</creationdate><title>Korteweg de-Vries Dynamics at the Edge of Laughlin State</title><author>Monteiro, Gustavo M ; Ganeshan, Sriram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31126579373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Bulk density</topic><topic>Compressible fluids</topic><topic>Half planes</topic><topic>Korteweg-Devries equation</topic><topic>Multiscale analysis</topic><topic>Nonlinear dynamics</topic><topic>Saddle points</topic><topic>Superfluidity</topic><topic>Vorticity</topic><toplevel>online_resources</toplevel><creatorcontrib>Monteiro, Gustavo M</creatorcontrib><creatorcontrib>Ganeshan, Sriram</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteiro, Gustavo M</au><au>Ganeshan, Sriram</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Korteweg de-Vries Dynamics at the Edge of Laughlin State</atitle><jtitle>arXiv.org</jtitle><date>2024-10-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this work, we show that the edge dynamics of the Laughlin state in the weakly nonlinear regime is governed by the Korteweg-de Vries (KdV) equation. Our starting point is the Chern-Simons-Ginzburg-Landau theory in the lower half-plane, where the effective edge dynamics are encoded in anomaly-compatible boundary conditions. The saddle point bulk dynamics and the corresponding boundary conditions of this action can be reformulated as two-dimensional compressible fluid dynamic equations, subject to a quantum Hall constraint that links the superfluid vorticity to its density fluctuations. The boundary conditions in this hydrodynamic framework consist of no-penetration and no-stress conditions. We then apply the method of multiple scales to this hydrodynamic system and derive the KdV equation for the edge dynamics in the weakly nonlinear regime. By employing the Hamiltonian framework for the KdV equation, we show that we can recover the chiral Luttinger liquid theory in the linearized regime and provide a pathway for canonically quantizing the edge dynamics in the weakly non-linear limit.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3112657937
source Publicly Available Content Database
subjects Boundary conditions
Bulk density
Compressible fluids
Half planes
Korteweg-Devries equation
Multiscale analysis
Nonlinear dynamics
Saddle points
Superfluidity
Vorticity
title Korteweg de-Vries Dynamics at the Edge of Laughlin State
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A41%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Korteweg%20de-Vries%20Dynamics%20at%20the%20Edge%20of%20Laughlin%20State&rft.jtitle=arXiv.org&rft.au=Monteiro,%20Gustavo%20M&rft.date=2024-10-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3112657937%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31126579373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112657937&rft_id=info:pmid/&rfr_iscdi=true