Loading…

Entropy in Electroencephalographic Signals Modulates with Force Magnitude During Grasping - A Preliminary Report

The ability to hold objects relies on neural processes underlying grip force control during grasping. Brain activity lateralized to contralateral hemisphere averaged over trials is associated with grip force applied on an object. However, the involvement of neural variability within-trial during gri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of motor behavior 2024-11, Vol.56 (6), p.665-677
Main Authors: Rao, Nishant, Paek, Andrew, Contreras-Vidal, Jose L., Parikh, Pranav J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c272t-b5098bbf1f1d3dbb9dbc8e17b89cd238d3c94ac97f925af7e1f9c628c074df1b3
container_end_page 677
container_issue 6
container_start_page 665
container_title Journal of motor behavior
container_volume 56
creator Rao, Nishant
Paek, Andrew
Contreras-Vidal, Jose L.
Parikh, Pranav J.
description The ability to hold objects relies on neural processes underlying grip force control during grasping. Brain activity lateralized to contralateral hemisphere averaged over trials is associated with grip force applied on an object. However, the involvement of neural variability within-trial during grip force control remains unclear. We examined dependence of neural variability over frontal, central, and parietal regions of interest (ROI) on grip force magnitude using noninvasive electroencephalography (EEG). We utilized our existing EEG dataset comprised of healthy young adults performing an isometric force control task, cued to exert 5, 10, or 15% of their maximum voluntary contraction (MVC) across trials and received visual feedback of their grip force. We quantified variability in EEG signal via sample entropy (sequence-dependent) and standard deviation (sequence-independent measure) over ROI. We found lateralized modulation in EEG sample entropy with force magnitude over central electrodes but not over frontal or parietal electrodes. However, modulation was not observed for standard deviation in the EEG activity. These findings highlight lateralized and spatially constrained modulation in sequence-dependent, but not sequence-independent component of EEG variability. We contextualize these findings in applications requiring finer precision (e.g., prosthesis), and propose directions for future studies investigating role of neural entropy in behavior.
doi_str_mv 10.1080/00222895.2024.2373241
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_3112662124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112662124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-b5098bbf1f1d3dbb9dbc8e17b89cd238d3c94ac97f925af7e1f9c628c074df1b3</originalsourceid><addsrcrecordid>eNp9kUtv1DAURi1ERYfCTwBZYsMmUz-SON5RtdNSqRWIlrXl54wrxw52omr-PYlmyoJFvbm-0rmffXUA-ITRGqMOnSNECOl4syaI1GtCGSU1fgNWmNeowoiwt2C1MNUCnYL3pTyh-TCE3oFTylHTUoJXYNjEMadhD32Em2D13Nio7bCTIW2zHHZewwe_jTIUeJ_MFORoC3z24w5ep6wtvJfb6MfJWHg1ZR-38CbLMiyXCl7An9kG3_so8x7-skPK4wdw4uYw-_FYz8Dv683j5ffq7sfN7eXFXaUJI2OlGsQ7pRx22FCjFDdKdxYz1XFtCO0M1byWmjPHSSMds9hx3ZJOI1YbhxU9A18PuUNOfyZbRtH7om0IMto0FUFRVzPWtC2b0S__oU9pysvKgmJM2pZgUs9Uc6B0TqVk68SQfT8vJjASixLxokQsSsRRyTz3-Zg-qd6af1MvDmbg2wHw0aXcy-eUgxGj3IeUXZZR--Ufr77xF6gpm74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112662124</pqid></control><display><type>article</type><title>Entropy in Electroencephalographic Signals Modulates with Force Magnitude During Grasping - A Preliminary Report</title><source>Taylor &amp; Francis</source><creator>Rao, Nishant ; Paek, Andrew ; Contreras-Vidal, Jose L. ; Parikh, Pranav J.</creator><creatorcontrib>Rao, Nishant ; Paek, Andrew ; Contreras-Vidal, Jose L. ; Parikh, Pranav J.</creatorcontrib><description>The ability to hold objects relies on neural processes underlying grip force control during grasping. Brain activity lateralized to contralateral hemisphere averaged over trials is associated with grip force applied on an object. However, the involvement of neural variability within-trial during grip force control remains unclear. We examined dependence of neural variability over frontal, central, and parietal regions of interest (ROI) on grip force magnitude using noninvasive electroencephalography (EEG). We utilized our existing EEG dataset comprised of healthy young adults performing an isometric force control task, cued to exert 5, 10, or 15% of their maximum voluntary contraction (MVC) across trials and received visual feedback of their grip force. We quantified variability in EEG signal via sample entropy (sequence-dependent) and standard deviation (sequence-independent measure) over ROI. We found lateralized modulation in EEG sample entropy with force magnitude over central electrodes but not over frontal or parietal electrodes. However, modulation was not observed for standard deviation in the EEG activity. These findings highlight lateralized and spatially constrained modulation in sequence-dependent, but not sequence-independent component of EEG variability. We contextualize these findings in applications requiring finer precision (e.g., prosthesis), and propose directions for future studies investigating role of neural entropy in behavior.</description><identifier>ISSN: 0022-2895</identifier><identifier>ISSN: 1940-1027</identifier><identifier>EISSN: 1940-1027</identifier><identifier>DOI: 10.1080/00222895.2024.2373241</identifier><identifier>PMID: 39056321</identifier><language>eng</language><publisher>United States: Routledge</publisher><subject>EEG ; Electroencephalography ; Entropy ; grasping ; grip force ; lateralization ; Scientific Concepts ; variability</subject><ispartof>Journal of motor behavior, 2024-11, Vol.56 (6), p.665-677</ispartof><rights>2024 Taylor &amp; Francis Group, LLC 2024</rights><rights>2024 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-b5098bbf1f1d3dbb9dbc8e17b89cd238d3c94ac97f925af7e1f9c628c074df1b3</cites><orcidid>0009-0007-4272-8189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39056321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rao, Nishant</creatorcontrib><creatorcontrib>Paek, Andrew</creatorcontrib><creatorcontrib>Contreras-Vidal, Jose L.</creatorcontrib><creatorcontrib>Parikh, Pranav J.</creatorcontrib><title>Entropy in Electroencephalographic Signals Modulates with Force Magnitude During Grasping - A Preliminary Report</title><title>Journal of motor behavior</title><addtitle>J Mot Behav</addtitle><description>The ability to hold objects relies on neural processes underlying grip force control during grasping. Brain activity lateralized to contralateral hemisphere averaged over trials is associated with grip force applied on an object. However, the involvement of neural variability within-trial during grip force control remains unclear. We examined dependence of neural variability over frontal, central, and parietal regions of interest (ROI) on grip force magnitude using noninvasive electroencephalography (EEG). We utilized our existing EEG dataset comprised of healthy young adults performing an isometric force control task, cued to exert 5, 10, or 15% of their maximum voluntary contraction (MVC) across trials and received visual feedback of their grip force. We quantified variability in EEG signal via sample entropy (sequence-dependent) and standard deviation (sequence-independent measure) over ROI. We found lateralized modulation in EEG sample entropy with force magnitude over central electrodes but not over frontal or parietal electrodes. However, modulation was not observed for standard deviation in the EEG activity. These findings highlight lateralized and spatially constrained modulation in sequence-dependent, but not sequence-independent component of EEG variability. We contextualize these findings in applications requiring finer precision (e.g., prosthesis), and propose directions for future studies investigating role of neural entropy in behavior.</description><subject>EEG</subject><subject>Electroencephalography</subject><subject>Entropy</subject><subject>grasping</subject><subject>grip force</subject><subject>lateralization</subject><subject>Scientific Concepts</subject><subject>variability</subject><issn>0022-2895</issn><issn>1940-1027</issn><issn>1940-1027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAURi1ERYfCTwBZYsMmUz-SON5RtdNSqRWIlrXl54wrxw52omr-PYlmyoJFvbm-0rmffXUA-ITRGqMOnSNECOl4syaI1GtCGSU1fgNWmNeowoiwt2C1MNUCnYL3pTyh-TCE3oFTylHTUoJXYNjEMadhD32Em2D13Nio7bCTIW2zHHZewwe_jTIUeJ_MFORoC3z24w5ep6wtvJfb6MfJWHg1ZR-38CbLMiyXCl7An9kG3_so8x7-skPK4wdw4uYw-_FYz8Dv683j5ffq7sfN7eXFXaUJI2OlGsQ7pRx22FCjFDdKdxYz1XFtCO0M1byWmjPHSSMds9hx3ZJOI1YbhxU9A18PuUNOfyZbRtH7om0IMto0FUFRVzPWtC2b0S__oU9pysvKgmJM2pZgUs9Uc6B0TqVk68SQfT8vJjASixLxokQsSsRRyTz3-Zg-qd6af1MvDmbg2wHw0aXcy-eUgxGj3IeUXZZR--Ufr77xF6gpm74</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Rao, Nishant</creator><creator>Paek, Andrew</creator><creator>Contreras-Vidal, Jose L.</creator><creator>Parikh, Pranav J.</creator><general>Routledge</general><general>Taylor &amp; Francis Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0007-4272-8189</orcidid></search><sort><creationdate>20241101</creationdate><title>Entropy in Electroencephalographic Signals Modulates with Force Magnitude During Grasping - A Preliminary Report</title><author>Rao, Nishant ; Paek, Andrew ; Contreras-Vidal, Jose L. ; Parikh, Pranav J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-b5098bbf1f1d3dbb9dbc8e17b89cd238d3c94ac97f925af7e1f9c628c074df1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>EEG</topic><topic>Electroencephalography</topic><topic>Entropy</topic><topic>grasping</topic><topic>grip force</topic><topic>lateralization</topic><topic>Scientific Concepts</topic><topic>variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Nishant</creatorcontrib><creatorcontrib>Paek, Andrew</creatorcontrib><creatorcontrib>Contreras-Vidal, Jose L.</creatorcontrib><creatorcontrib>Parikh, Pranav J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of motor behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Nishant</au><au>Paek, Andrew</au><au>Contreras-Vidal, Jose L.</au><au>Parikh, Pranav J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy in Electroencephalographic Signals Modulates with Force Magnitude During Grasping - A Preliminary Report</atitle><jtitle>Journal of motor behavior</jtitle><addtitle>J Mot Behav</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>56</volume><issue>6</issue><spage>665</spage><epage>677</epage><pages>665-677</pages><issn>0022-2895</issn><issn>1940-1027</issn><eissn>1940-1027</eissn><abstract>The ability to hold objects relies on neural processes underlying grip force control during grasping. Brain activity lateralized to contralateral hemisphere averaged over trials is associated with grip force applied on an object. However, the involvement of neural variability within-trial during grip force control remains unclear. We examined dependence of neural variability over frontal, central, and parietal regions of interest (ROI) on grip force magnitude using noninvasive electroencephalography (EEG). We utilized our existing EEG dataset comprised of healthy young adults performing an isometric force control task, cued to exert 5, 10, or 15% of their maximum voluntary contraction (MVC) across trials and received visual feedback of their grip force. We quantified variability in EEG signal via sample entropy (sequence-dependent) and standard deviation (sequence-independent measure) over ROI. We found lateralized modulation in EEG sample entropy with force magnitude over central electrodes but not over frontal or parietal electrodes. However, modulation was not observed for standard deviation in the EEG activity. These findings highlight lateralized and spatially constrained modulation in sequence-dependent, but not sequence-independent component of EEG variability. We contextualize these findings in applications requiring finer precision (e.g., prosthesis), and propose directions for future studies investigating role of neural entropy in behavior.</abstract><cop>United States</cop><pub>Routledge</pub><pmid>39056321</pmid><doi>10.1080/00222895.2024.2373241</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0007-4272-8189</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2895
ispartof Journal of motor behavior, 2024-11, Vol.56 (6), p.665-677
issn 0022-2895
1940-1027
1940-1027
language eng
recordid cdi_proquest_journals_3112662124
source Taylor & Francis
subjects EEG
Electroencephalography
Entropy
grasping
grip force
lateralization
Scientific Concepts
variability
title Entropy in Electroencephalographic Signals Modulates with Force Magnitude During Grasping - A Preliminary Report
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20in%20Electroencephalographic%20Signals%20Modulates%20with%20Force%20Magnitude%20During%20Grasping%20-%20A%20Preliminary%20Report&rft.jtitle=Journal%20of%20motor%20behavior&rft.au=Rao,%20Nishant&rft.date=2024-11-01&rft.volume=56&rft.issue=6&rft.spage=665&rft.epage=677&rft.pages=665-677&rft.issn=0022-2895&rft.eissn=1940-1027&rft_id=info:doi/10.1080/00222895.2024.2373241&rft_dat=%3Cproquest_pubme%3E3112662124%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c272t-b5098bbf1f1d3dbb9dbc8e17b89cd238d3c94ac97f925af7e1f9c628c074df1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112662124&rft_id=info:pmid/39056321&rfr_iscdi=true