Loading…

SEAL: SEmantic-Augmented Imitation Learning via Language Model

Hierarchical Imitation Learning (HIL) is a promising approach for tackling long-horizon decision-making tasks. While it is a challenging task due to the lack of detailed supervisory labels for sub-goal learning, and reliance on hundreds to thousands of expert demonstrations. In this work, we introdu...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Gu, Chengyang, Pan, Yuxin, Bai, Haotian, Xiong, Hui, Chen, Yize
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gu, Chengyang
Pan, Yuxin
Bai, Haotian
Xiong, Hui
Chen, Yize
description Hierarchical Imitation Learning (HIL) is a promising approach for tackling long-horizon decision-making tasks. While it is a challenging task due to the lack of detailed supervisory labels for sub-goal learning, and reliance on hundreds to thousands of expert demonstrations. In this work, we introduce SEAL, a novel framework that leverages Large Language Models (LLMs)'s powerful semantic and world knowledge for both specifying sub-goal space and pre-labeling states to semantically meaningful sub-goal representations without prior knowledge of task hierarchies. SEAL employs a dual-encoder structure, combining supervised LLM-guided sub-goal learning with unsupervised Vector Quantization (VQ) for more robust sub-goal representations. Additionally, SEAL incorporates a transition-augmented low-level planner for improved adaptation to sub-goal transitions. Our experiments demonstrate that SEAL outperforms state-of-the-art HIL methods and LLM-based planning approaches, particularly in settings with small expert datasets and complex long-horizon tasks.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3112965102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112965102</sourcerecordid><originalsourceid>FETCH-proquest_journals_31129651023</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC8mNrT-DIFJRqFPdS7DXkNLeaJP4_Dr4AE5n-M6EJaCUzDYrgBlLve-EEFCsIc9VwvZ1eah2vC4HTcHes0M0A1LAll8GG3SwjniFeiRLhr-t5pUmE7VBfnUt9gs2fejeY_rrnC1P5e14zp6je0X0oelcHOlLjZIStkUuBaj_rg8nETcs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112965102</pqid></control><display><type>article</type><title>SEAL: SEmantic-Augmented Imitation Learning via Language Model</title><source>Publicly Available Content Database</source><creator>Gu, Chengyang ; Pan, Yuxin ; Bai, Haotian ; Xiong, Hui ; Chen, Yize</creator><creatorcontrib>Gu, Chengyang ; Pan, Yuxin ; Bai, Haotian ; Xiong, Hui ; Chen, Yize</creatorcontrib><description>Hierarchical Imitation Learning (HIL) is a promising approach for tackling long-horizon decision-making tasks. While it is a challenging task due to the lack of detailed supervisory labels for sub-goal learning, and reliance on hundreds to thousands of expert demonstrations. In this work, we introduce SEAL, a novel framework that leverages Large Language Models (LLMs)'s powerful semantic and world knowledge for both specifying sub-goal space and pre-labeling states to semantically meaningful sub-goal representations without prior knowledge of task hierarchies. SEAL employs a dual-encoder structure, combining supervised LLM-guided sub-goal learning with unsupervised Vector Quantization (VQ) for more robust sub-goal representations. Additionally, SEAL incorporates a transition-augmented low-level planner for improved adaptation to sub-goal transitions. Our experiments demonstrate that SEAL outperforms state-of-the-art HIL methods and LLM-based planning approaches, particularly in settings with small expert datasets and complex long-horizon tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Hierarchies ; Knowledge representation ; Labels ; Large language models ; Semantics ; Task complexity</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3112965102?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Gu, Chengyang</creatorcontrib><creatorcontrib>Pan, Yuxin</creatorcontrib><creatorcontrib>Bai, Haotian</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><creatorcontrib>Chen, Yize</creatorcontrib><title>SEAL: SEmantic-Augmented Imitation Learning via Language Model</title><title>arXiv.org</title><description>Hierarchical Imitation Learning (HIL) is a promising approach for tackling long-horizon decision-making tasks. While it is a challenging task due to the lack of detailed supervisory labels for sub-goal learning, and reliance on hundreds to thousands of expert demonstrations. In this work, we introduce SEAL, a novel framework that leverages Large Language Models (LLMs)'s powerful semantic and world knowledge for both specifying sub-goal space and pre-labeling states to semantically meaningful sub-goal representations without prior knowledge of task hierarchies. SEAL employs a dual-encoder structure, combining supervised LLM-guided sub-goal learning with unsupervised Vector Quantization (VQ) for more robust sub-goal representations. Additionally, SEAL incorporates a transition-augmented low-level planner for improved adaptation to sub-goal transitions. Our experiments demonstrate that SEAL outperforms state-of-the-art HIL methods and LLM-based planning approaches, particularly in settings with small expert datasets and complex long-horizon tasks.</description><subject>Hierarchies</subject><subject>Knowledge representation</subject><subject>Labels</subject><subject>Large language models</subject><subject>Semantics</subject><subject>Task complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC8mNrT-DIFJRqFPdS7DXkNLeaJP4_Dr4AE5n-M6EJaCUzDYrgBlLve-EEFCsIc9VwvZ1eah2vC4HTcHes0M0A1LAll8GG3SwjniFeiRLhr-t5pUmE7VBfnUt9gs2fejeY_rrnC1P5e14zp6je0X0oelcHOlLjZIStkUuBaj_rg8nETcs</recordid><startdate>20241003</startdate><enddate>20241003</enddate><creator>Gu, Chengyang</creator><creator>Pan, Yuxin</creator><creator>Bai, Haotian</creator><creator>Xiong, Hui</creator><creator>Chen, Yize</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241003</creationdate><title>SEAL: SEmantic-Augmented Imitation Learning via Language Model</title><author>Gu, Chengyang ; Pan, Yuxin ; Bai, Haotian ; Xiong, Hui ; Chen, Yize</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31129651023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hierarchies</topic><topic>Knowledge representation</topic><topic>Labels</topic><topic>Large language models</topic><topic>Semantics</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Gu, Chengyang</creatorcontrib><creatorcontrib>Pan, Yuxin</creatorcontrib><creatorcontrib>Bai, Haotian</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><creatorcontrib>Chen, Yize</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Chengyang</au><au>Pan, Yuxin</au><au>Bai, Haotian</au><au>Xiong, Hui</au><au>Chen, Yize</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SEAL: SEmantic-Augmented Imitation Learning via Language Model</atitle><jtitle>arXiv.org</jtitle><date>2024-10-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Hierarchical Imitation Learning (HIL) is a promising approach for tackling long-horizon decision-making tasks. While it is a challenging task due to the lack of detailed supervisory labels for sub-goal learning, and reliance on hundreds to thousands of expert demonstrations. In this work, we introduce SEAL, a novel framework that leverages Large Language Models (LLMs)'s powerful semantic and world knowledge for both specifying sub-goal space and pre-labeling states to semantically meaningful sub-goal representations without prior knowledge of task hierarchies. SEAL employs a dual-encoder structure, combining supervised LLM-guided sub-goal learning with unsupervised Vector Quantization (VQ) for more robust sub-goal representations. Additionally, SEAL incorporates a transition-augmented low-level planner for improved adaptation to sub-goal transitions. Our experiments demonstrate that SEAL outperforms state-of-the-art HIL methods and LLM-based planning approaches, particularly in settings with small expert datasets and complex long-horizon tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3112965102
source Publicly Available Content Database
subjects Hierarchies
Knowledge representation
Labels
Large language models
Semantics
Task complexity
title SEAL: SEmantic-Augmented Imitation Learning via Language Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SEAL:%20SEmantic-Augmented%20Imitation%20Learning%20via%20Language%20Model&rft.jtitle=arXiv.org&rft.au=Gu,%20Chengyang&rft.date=2024-10-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3112965102%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31129651023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112965102&rft_id=info:pmid/&rfr_iscdi=true