Loading…
Machine Learning for Digital Shadow Design in Health Insurance Sector
The digital transformation process in organizations has accelerated significantly in recent years; the COVID-19 pandemic was a catalyst that highlighted the need for digitalization in all sectors. In the case of the health sector, this process is complex due to the processes inherent in health care...
Saved in:
Published in: | Mobile networks and applications 2024-02, Vol.29 (1), p.221-234 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The digital transformation process in organizations has accelerated significantly in recent years; the COVID-19 pandemic was a catalyst that highlighted the need for digitalization in all sectors. In the case of the health sector, this process is complex due to the processes inherent in health care as well as the integration of multiple sectors that allow the provision of health services. A first approach towards the construction of a Digital Twin in health organizations is a Digital Shadow that allows an orderly transition towards digital operation in real time. This paper presents a first approach to the design of a Digital Shadow for the health insurance sector and specifically for the care of patients diagnosed with COVID-19 through the implementation of an analytical intelligence system based on machine learning models to forecast and monitor to patients who represent catastrophic cases for the insurer. |
---|---|
ISSN: | 1383-469X 1572-8153 |
DOI: | 10.1007/s11036-023-02289-2 |