Loading…

A composite acoustic black hole for ultra-low-frequency and ultra-broad-band sound wave control

Achieving ultra-low and ultra-broad-band sound absorption and full-band sound insulation is a major challenge. Here, we propose a composite structure of a multilayer micro-perforated plate and acoustic black holes to achieve this purpose. Combining the stable sound absorption effect of the multilaye...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vibration and control 2024-08, Vol.30 (15-16), p.3462-3471
Main Authors: Liang, Xiao, Liang, Haofeng, Chu, Jiaming, Yang, Zhen, Zhou, Zhuo, Gao, Nansha, Zhang, Siwen, Zhou, Guojian, Hu, Congfang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-45b1354328cb6f5767822d5bf8c5256a2a4e1fb2e8a90315604487f0ec08eb6b3
cites cdi_FETCH-LOGICAL-c312t-45b1354328cb6f5767822d5bf8c5256a2a4e1fb2e8a90315604487f0ec08eb6b3
container_end_page 3471
container_issue 15-16
container_start_page 3462
container_title Journal of vibration and control
container_volume 30
creator Liang, Xiao
Liang, Haofeng
Chu, Jiaming
Yang, Zhen
Zhou, Zhuo
Gao, Nansha
Zhang, Siwen
Zhou, Guojian
Hu, Congfang
description Achieving ultra-low and ultra-broad-band sound absorption and full-band sound insulation is a major challenge. Here, we propose a composite structure of a multilayer micro-perforated plate and acoustic black holes to achieve this purpose. Combining the stable sound absorption effect of the multilayer micro-perforated plate in the full frequency band and the sound insulation effect of the acoustic black hole in the low frequency and the excellent sound absorption effect in the high frequency, the excellent sound control effect of 600–3150 Hz absorption coefficient greater than 0.8 and 100–3150 Hz sound transmission loss greater than 50 dB is achieved. The acoustic properties of different components and different acoustic black hole outlet were evaluated by finite element method, and the principles of sound absorption and insulation of the composite structure were elaborated. Finally, the results of finite element method are verified by impedance tube experiments. This work can make further progress in elucidating the acoustic properties of the ABH and open up new avenues in the control of ultra-low and ultra-wide frequency acoustic waves.
doi_str_mv 10.1177/10775463231194702
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113145338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10775463231194702</sage_id><sourcerecordid>3113145338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-45b1354328cb6f5767822d5bf8c5256a2a4e1fb2e8a90315604487f0ec08eb6b3</originalsourceid><addsrcrecordid>eNp1UE1LQzEQDKJgrf4AbwHPqdl8vKTHUvwCwYueQ5Im2vr6UpP3LP33prTgQbzsLrMzs8sgdA10AqDULVClpGg44wBToSg7QSNQAgib6ua0znVP9oRzdFHKilIqBNARMjPs03qTyrIP2Po0lH7psWut_8QfqQ04poyHts-WtGlLYg5fQ-j8DttuccRdTnZB3B4oaah1a79Dde36nNpLdBZtW8LVsY_R2_3d6_yRPL88PM1nz8RzYD0R0gGXgjPtXROlapRmbCFd1F4y2VhmRYDoWNB2SjnIpr6vVaTBUx1c4_gY3Rx8NznVD0tvVmnIXT1paiIchORcVxYcWD6nUnKIZpOXa5t3BqjZ52j-5Fg1k4Om2Pfw6_q_4AcmB3H5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113145338</pqid></control><display><type>article</type><title>A composite acoustic black hole for ultra-low-frequency and ultra-broad-band sound wave control</title><source>Sage Journals Online</source><creator>Liang, Xiao ; Liang, Haofeng ; Chu, Jiaming ; Yang, Zhen ; Zhou, Zhuo ; Gao, Nansha ; Zhang, Siwen ; Zhou, Guojian ; Hu, Congfang</creator><creatorcontrib>Liang, Xiao ; Liang, Haofeng ; Chu, Jiaming ; Yang, Zhen ; Zhou, Zhuo ; Gao, Nansha ; Zhang, Siwen ; Zhou, Guojian ; Hu, Congfang</creatorcontrib><description>Achieving ultra-low and ultra-broad-band sound absorption and full-band sound insulation is a major challenge. Here, we propose a composite structure of a multilayer micro-perforated plate and acoustic black holes to achieve this purpose. Combining the stable sound absorption effect of the multilayer micro-perforated plate in the full frequency band and the sound insulation effect of the acoustic black hole in the low frequency and the excellent sound absorption effect in the high frequency, the excellent sound control effect of 600–3150 Hz absorption coefficient greater than 0.8 and 100–3150 Hz sound transmission loss greater than 50 dB is achieved. The acoustic properties of different components and different acoustic black hole outlet were evaluated by finite element method, and the principles of sound absorption and insulation of the composite structure were elaborated. Finally, the results of finite element method are verified by impedance tube experiments. This work can make further progress in elucidating the acoustic properties of the ABH and open up new avenues in the control of ultra-low and ultra-wide frequency acoustic waves.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/10775463231194702</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Absorption ; Absorptivity ; Acoustic insulation ; Acoustic properties ; Acoustic waves ; Acoustics ; Composite structures ; Finite element analysis ; Finite element method ; Frequencies ; Insulation ; Multilayers ; Perforated plates ; Sound transmission ; Sound waves ; Transmission loss</subject><ispartof>Journal of vibration and control, 2024-08, Vol.30 (15-16), p.3462-3471</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-45b1354328cb6f5767822d5bf8c5256a2a4e1fb2e8a90315604487f0ec08eb6b3</citedby><cites>FETCH-LOGICAL-c312t-45b1354328cb6f5767822d5bf8c5256a2a4e1fb2e8a90315604487f0ec08eb6b3</cites><orcidid>0000-0002-8760-2746 ; 0000-0002-4633-7050 ; 0000-0002-8587-9063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79236</link.rule.ids></links><search><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Liang, Haofeng</creatorcontrib><creatorcontrib>Chu, Jiaming</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Zhou, Zhuo</creatorcontrib><creatorcontrib>Gao, Nansha</creatorcontrib><creatorcontrib>Zhang, Siwen</creatorcontrib><creatorcontrib>Zhou, Guojian</creatorcontrib><creatorcontrib>Hu, Congfang</creatorcontrib><title>A composite acoustic black hole for ultra-low-frequency and ultra-broad-band sound wave control</title><title>Journal of vibration and control</title><description>Achieving ultra-low and ultra-broad-band sound absorption and full-band sound insulation is a major challenge. Here, we propose a composite structure of a multilayer micro-perforated plate and acoustic black holes to achieve this purpose. Combining the stable sound absorption effect of the multilayer micro-perforated plate in the full frequency band and the sound insulation effect of the acoustic black hole in the low frequency and the excellent sound absorption effect in the high frequency, the excellent sound control effect of 600–3150 Hz absorption coefficient greater than 0.8 and 100–3150 Hz sound transmission loss greater than 50 dB is achieved. The acoustic properties of different components and different acoustic black hole outlet were evaluated by finite element method, and the principles of sound absorption and insulation of the composite structure were elaborated. Finally, the results of finite element method are verified by impedance tube experiments. This work can make further progress in elucidating the acoustic properties of the ABH and open up new avenues in the control of ultra-low and ultra-wide frequency acoustic waves.</description><subject>Absorption</subject><subject>Absorptivity</subject><subject>Acoustic insulation</subject><subject>Acoustic properties</subject><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Composite structures</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Frequencies</subject><subject>Insulation</subject><subject>Multilayers</subject><subject>Perforated plates</subject><subject>Sound transmission</subject><subject>Sound waves</subject><subject>Transmission loss</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LQzEQDKJgrf4AbwHPqdl8vKTHUvwCwYueQ5Im2vr6UpP3LP33prTgQbzsLrMzs8sgdA10AqDULVClpGg44wBToSg7QSNQAgib6ua0znVP9oRzdFHKilIqBNARMjPs03qTyrIP2Po0lH7psWut_8QfqQ04poyHts-WtGlLYg5fQ-j8DttuccRdTnZB3B4oaah1a79Dde36nNpLdBZtW8LVsY_R2_3d6_yRPL88PM1nz8RzYD0R0gGXgjPtXROlapRmbCFd1F4y2VhmRYDoWNB2SjnIpr6vVaTBUx1c4_gY3Rx8NznVD0tvVmnIXT1paiIchORcVxYcWD6nUnKIZpOXa5t3BqjZ52j-5Fg1k4Om2Pfw6_q_4AcmB3H5</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Liang, Xiao</creator><creator>Liang, Haofeng</creator><creator>Chu, Jiaming</creator><creator>Yang, Zhen</creator><creator>Zhou, Zhuo</creator><creator>Gao, Nansha</creator><creator>Zhang, Siwen</creator><creator>Zhou, Guojian</creator><creator>Hu, Congfang</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8760-2746</orcidid><orcidid>https://orcid.org/0000-0002-4633-7050</orcidid><orcidid>https://orcid.org/0000-0002-8587-9063</orcidid></search><sort><creationdate>20240801</creationdate><title>A composite acoustic black hole for ultra-low-frequency and ultra-broad-band sound wave control</title><author>Liang, Xiao ; Liang, Haofeng ; Chu, Jiaming ; Yang, Zhen ; Zhou, Zhuo ; Gao, Nansha ; Zhang, Siwen ; Zhou, Guojian ; Hu, Congfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-45b1354328cb6f5767822d5bf8c5256a2a4e1fb2e8a90315604487f0ec08eb6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption</topic><topic>Absorptivity</topic><topic>Acoustic insulation</topic><topic>Acoustic properties</topic><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Composite structures</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Frequencies</topic><topic>Insulation</topic><topic>Multilayers</topic><topic>Perforated plates</topic><topic>Sound transmission</topic><topic>Sound waves</topic><topic>Transmission loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Liang, Haofeng</creatorcontrib><creatorcontrib>Chu, Jiaming</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Zhou, Zhuo</creatorcontrib><creatorcontrib>Gao, Nansha</creatorcontrib><creatorcontrib>Zhang, Siwen</creatorcontrib><creatorcontrib>Zhou, Guojian</creatorcontrib><creatorcontrib>Hu, Congfang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xiao</au><au>Liang, Haofeng</au><au>Chu, Jiaming</au><au>Yang, Zhen</au><au>Zhou, Zhuo</au><au>Gao, Nansha</au><au>Zhang, Siwen</au><au>Zhou, Guojian</au><au>Hu, Congfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A composite acoustic black hole for ultra-low-frequency and ultra-broad-band sound wave control</atitle><jtitle>Journal of vibration and control</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>30</volume><issue>15-16</issue><spage>3462</spage><epage>3471</epage><pages>3462-3471</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>Achieving ultra-low and ultra-broad-band sound absorption and full-band sound insulation is a major challenge. Here, we propose a composite structure of a multilayer micro-perforated plate and acoustic black holes to achieve this purpose. Combining the stable sound absorption effect of the multilayer micro-perforated plate in the full frequency band and the sound insulation effect of the acoustic black hole in the low frequency and the excellent sound absorption effect in the high frequency, the excellent sound control effect of 600–3150 Hz absorption coefficient greater than 0.8 and 100–3150 Hz sound transmission loss greater than 50 dB is achieved. The acoustic properties of different components and different acoustic black hole outlet were evaluated by finite element method, and the principles of sound absorption and insulation of the composite structure were elaborated. Finally, the results of finite element method are verified by impedance tube experiments. This work can make further progress in elucidating the acoustic properties of the ABH and open up new avenues in the control of ultra-low and ultra-wide frequency acoustic waves.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10775463231194702</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8760-2746</orcidid><orcidid>https://orcid.org/0000-0002-4633-7050</orcidid><orcidid>https://orcid.org/0000-0002-8587-9063</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1077-5463
ispartof Journal of vibration and control, 2024-08, Vol.30 (15-16), p.3462-3471
issn 1077-5463
1741-2986
language eng
recordid cdi_proquest_journals_3113145338
source Sage Journals Online
subjects Absorption
Absorptivity
Acoustic insulation
Acoustic properties
Acoustic waves
Acoustics
Composite structures
Finite element analysis
Finite element method
Frequencies
Insulation
Multilayers
Perforated plates
Sound transmission
Sound waves
Transmission loss
title A composite acoustic black hole for ultra-low-frequency and ultra-broad-band sound wave control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20composite%20acoustic%20black%20hole%20for%20ultra-low-frequency%20and%20ultra-broad-band%20sound%20wave%20control&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Liang,%20Xiao&rft.date=2024-08-01&rft.volume=30&rft.issue=15-16&rft.spage=3462&rft.epage=3471&rft.pages=3462-3471&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/10775463231194702&rft_dat=%3Cproquest_cross%3E3113145338%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-45b1354328cb6f5767822d5bf8c5256a2a4e1fb2e8a90315604487f0ec08eb6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3113145338&rft_id=info:pmid/&rft_sage_id=10.1177_10775463231194702&rfr_iscdi=true