Loading…

Decoupling Substitution Effects from Point Defects in Layered Ni‐Rich Oxide Cathode Materials for Lithium‐Ion Batteries

Ni‐rich LiNixCoyMnzO2 cathode materials offer high practical capacities and good rate capability, but are notorious for being unstable at high state of charge. Here, a series of such layered oxides with nickel contents ranging from 88 to 100 mol% is fabricated by sodium‐to‐lithium ion exchange, yiel...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-10, Vol.34 (41), p.n/a
Main Authors: Karger, Leonhard, Korneychuk, Svetlana, Sicolo, Sabrina, Li, Hang, van den Bergh, Wessel, Zhang, Ruizhuo, Indris, Sylvio, Kondrakov, Aleksandr, Janek, Jürgen, Brezesinski, Torsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2424-1d1152fb5129404a6dfccc64ada289ade3b59b742e6ad1d0a16dc35b5878c1ef3
container_end_page n/a
container_issue 41
container_start_page
container_title Advanced functional materials
container_volume 34
creator Karger, Leonhard
Korneychuk, Svetlana
Sicolo, Sabrina
Li, Hang
van den Bergh, Wessel
Zhang, Ruizhuo
Indris, Sylvio
Kondrakov, Aleksandr
Janek, Jürgen
Brezesinski, Torsten
description Ni‐rich LiNixCoyMnzO2 cathode materials offer high practical capacities and good rate capability, but are notorious for being unstable at high state of charge. Here, a series of such layered oxides with nickel contents ranging from 88 to 100 mol% is fabricated by sodium‐to‐lithium ion exchange, yielding materials devoid of NiLi•${\mathrm{Ni}}_{{\mathrm{Li}}}^ \bullet $ substitutional defects. Examining the initial charge/discharge cycle reveals effects that are specifically caused by transition‐metal substitution, which would otherwise be obscured by changes in lithium‐site defect concentration. Lowering the nickel content helps to stabilize the high‐voltage regime, while simultaneously negatively affecting lithium diffusion. Operando X‐ray diffraction indicates mitigation of volume variation during cycling and transition toward solid‐solution behavior with sufficiently high cobalt and manganese contents, thus providing an explanation for the increased stability. The interplay between transition‐metal substitution, kinetic hindrance, and solid‐solution behavior may be a result of local inhomogeneities due to lithium‐vacancy pinning, which is further elucidated through density functional theory calculations. Overall, this work sheds new light on the effects of manganese and cobalt incorporation into the transition‐metal layer and their conjunction with NiLi•${\mathrm{Ni}}_{{\mathrm{Li}}}^ \bullet $ defects. Nickel substitution strongly impacts the electrochemistry of layered Ni‐rich oxide cathode materials. In particular, changes in composition alter the defect concentration, rendering substitution‐based structure‐property relationships ambiguous. In this work, the nickel content is varied while maintaining defect‐free character, thus allowing for selective study of substitution effects.
doi_str_mv 10.1002/adfm.202402444
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113484016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113484016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2424-1d1152fb5129404a6dfccc64ada289ade3b59b742e6ad1d0a16dc35b5878c1ef3</originalsourceid><addsrcrecordid>eNqFkMtKA0EQRQdRMEa3rhtcJ3b19LyWMQ8NJEZ8gLuhpx-mQ2Y69vSgwY2f4Df6JXYYiUuhoIqqc2_BDYJzwH3AmFwyoco-wYT6ovQg6EAMcS_EJD3cz_B8HJzU9QpjSJKQdoKPkeSm2ax19YIemqJ22jVOmwqNlZLc1UhZU6I7oyuHRrJd6QrN2FZaKdCt_v78utd8iRbvWkg0ZG5pfJ8zJ61ma683Fs20W-qm9OjUO18xtzvK-jQ4Uh6RZ7-9GzxNxo_Dm95scT0dDmY9TiihPRAAEVFFBCSjmLJYKM55TJlgJM2YkGERZUVCiYyZAIEZxIKHURGlScpBqrAbXLS-G2teG1m7fGUaW_mXeQgQ0pRiiD3VbyluTV1bqfKN1SWz2xxwvgs43wWc7wP2gqwVvOm13P5D54PRZP6n_QGMB4K2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113484016</pqid></control><display><type>article</type><title>Decoupling Substitution Effects from Point Defects in Layered Ni‐Rich Oxide Cathode Materials for Lithium‐Ion Batteries</title><source>Wiley</source><creator>Karger, Leonhard ; Korneychuk, Svetlana ; Sicolo, Sabrina ; Li, Hang ; van den Bergh, Wessel ; Zhang, Ruizhuo ; Indris, Sylvio ; Kondrakov, Aleksandr ; Janek, Jürgen ; Brezesinski, Torsten</creator><creatorcontrib>Karger, Leonhard ; Korneychuk, Svetlana ; Sicolo, Sabrina ; Li, Hang ; van den Bergh, Wessel ; Zhang, Ruizhuo ; Indris, Sylvio ; Kondrakov, Aleksandr ; Janek, Jürgen ; Brezesinski, Torsten</creatorcontrib><description>Ni‐rich LiNixCoyMnzO2 cathode materials offer high practical capacities and good rate capability, but are notorious for being unstable at high state of charge. Here, a series of such layered oxides with nickel contents ranging from 88 to 100 mol% is fabricated by sodium‐to‐lithium ion exchange, yielding materials devoid of NiLi•${\mathrm{Ni}}_{{\mathrm{Li}}}^ \bullet $ substitutional defects. Examining the initial charge/discharge cycle reveals effects that are specifically caused by transition‐metal substitution, which would otherwise be obscured by changes in lithium‐site defect concentration. Lowering the nickel content helps to stabilize the high‐voltage regime, while simultaneously negatively affecting lithium diffusion. Operando X‐ray diffraction indicates mitigation of volume variation during cycling and transition toward solid‐solution behavior with sufficiently high cobalt and manganese contents, thus providing an explanation for the increased stability. The interplay between transition‐metal substitution, kinetic hindrance, and solid‐solution behavior may be a result of local inhomogeneities due to lithium‐vacancy pinning, which is further elucidated through density functional theory calculations. Overall, this work sheds new light on the effects of manganese and cobalt incorporation into the transition‐metal layer and their conjunction with NiLi•${\mathrm{Ni}}_{{\mathrm{Li}}}^ \bullet $ defects. Nickel substitution strongly impacts the electrochemistry of layered Ni‐rich oxide cathode materials. In particular, changes in composition alter the defect concentration, rendering substitution‐based structure‐property relationships ambiguous. In this work, the nickel content is varied while maintaining defect‐free character, thus allowing for selective study of substitution effects.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202402444</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Charge materials ; Cobalt ; Decoupling ; Density functional theory ; Electrode materials ; first‐cycle capacity loss ; Ion exchange ; Lithium ; Lithium-ion batteries ; Manganese ; Materials substitution ; Nickel ; Ni‐rich cathode ; Point defects</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (41), p.n/a</ispartof><rights>2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2424-1d1152fb5129404a6dfccc64ada289ade3b59b742e6ad1d0a16dc35b5878c1ef3</cites><orcidid>0000-0003-1465-2854 ; 0000-0002-3078-7161 ; 0000-0002-3972-452X ; 0000-0002-5100-113X ; 0000-0003-0292-5026 ; 0000-0002-4336-263X ; 0000-0002-9221-4756 ; 0009-0007-1231-2799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Karger, Leonhard</creatorcontrib><creatorcontrib>Korneychuk, Svetlana</creatorcontrib><creatorcontrib>Sicolo, Sabrina</creatorcontrib><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>van den Bergh, Wessel</creatorcontrib><creatorcontrib>Zhang, Ruizhuo</creatorcontrib><creatorcontrib>Indris, Sylvio</creatorcontrib><creatorcontrib>Kondrakov, Aleksandr</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><creatorcontrib>Brezesinski, Torsten</creatorcontrib><title>Decoupling Substitution Effects from Point Defects in Layered Ni‐Rich Oxide Cathode Materials for Lithium‐Ion Batteries</title><title>Advanced functional materials</title><description>Ni‐rich LiNixCoyMnzO2 cathode materials offer high practical capacities and good rate capability, but are notorious for being unstable at high state of charge. Here, a series of such layered oxides with nickel contents ranging from 88 to 100 mol% is fabricated by sodium‐to‐lithium ion exchange, yielding materials devoid of NiLi•${\mathrm{Ni}}_{{\mathrm{Li}}}^ \bullet $ substitutional defects. Examining the initial charge/discharge cycle reveals effects that are specifically caused by transition‐metal substitution, which would otherwise be obscured by changes in lithium‐site defect concentration. Lowering the nickel content helps to stabilize the high‐voltage regime, while simultaneously negatively affecting lithium diffusion. Operando X‐ray diffraction indicates mitigation of volume variation during cycling and transition toward solid‐solution behavior with sufficiently high cobalt and manganese contents, thus providing an explanation for the increased stability. The interplay between transition‐metal substitution, kinetic hindrance, and solid‐solution behavior may be a result of local inhomogeneities due to lithium‐vacancy pinning, which is further elucidated through density functional theory calculations. Overall, this work sheds new light on the effects of manganese and cobalt incorporation into the transition‐metal layer and their conjunction with NiLi•${\mathrm{Ni}}_{{\mathrm{Li}}}^ \bullet $ defects. Nickel substitution strongly impacts the electrochemistry of layered Ni‐rich oxide cathode materials. In particular, changes in composition alter the defect concentration, rendering substitution‐based structure‐property relationships ambiguous. In this work, the nickel content is varied while maintaining defect‐free character, thus allowing for selective study of substitution effects.</description><subject>Cathodes</subject><subject>Charge materials</subject><subject>Cobalt</subject><subject>Decoupling</subject><subject>Density functional theory</subject><subject>Electrode materials</subject><subject>first‐cycle capacity loss</subject><subject>Ion exchange</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Manganese</subject><subject>Materials substitution</subject><subject>Nickel</subject><subject>Ni‐rich cathode</subject><subject>Point defects</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtKA0EQRQdRMEa3rhtcJ3b19LyWMQ8NJEZ8gLuhpx-mQ2Y69vSgwY2f4Df6JXYYiUuhoIqqc2_BDYJzwH3AmFwyoco-wYT6ovQg6EAMcS_EJD3cz_B8HJzU9QpjSJKQdoKPkeSm2ax19YIemqJ22jVOmwqNlZLc1UhZU6I7oyuHRrJd6QrN2FZaKdCt_v78utd8iRbvWkg0ZG5pfJ8zJ61ma683Fs20W-qm9OjUO18xtzvK-jQ4Uh6RZ7-9GzxNxo_Dm95scT0dDmY9TiihPRAAEVFFBCSjmLJYKM55TJlgJM2YkGERZUVCiYyZAIEZxIKHURGlScpBqrAbXLS-G2teG1m7fGUaW_mXeQgQ0pRiiD3VbyluTV1bqfKN1SWz2xxwvgs43wWc7wP2gqwVvOm13P5D54PRZP6n_QGMB4K2</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Karger, Leonhard</creator><creator>Korneychuk, Svetlana</creator><creator>Sicolo, Sabrina</creator><creator>Li, Hang</creator><creator>van den Bergh, Wessel</creator><creator>Zhang, Ruizhuo</creator><creator>Indris, Sylvio</creator><creator>Kondrakov, Aleksandr</creator><creator>Janek, Jürgen</creator><creator>Brezesinski, Torsten</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1465-2854</orcidid><orcidid>https://orcid.org/0000-0002-3078-7161</orcidid><orcidid>https://orcid.org/0000-0002-3972-452X</orcidid><orcidid>https://orcid.org/0000-0002-5100-113X</orcidid><orcidid>https://orcid.org/0000-0003-0292-5026</orcidid><orcidid>https://orcid.org/0000-0002-4336-263X</orcidid><orcidid>https://orcid.org/0000-0002-9221-4756</orcidid><orcidid>https://orcid.org/0009-0007-1231-2799</orcidid></search><sort><creationdate>20241001</creationdate><title>Decoupling Substitution Effects from Point Defects in Layered Ni‐Rich Oxide Cathode Materials for Lithium‐Ion Batteries</title><author>Karger, Leonhard ; Korneychuk, Svetlana ; Sicolo, Sabrina ; Li, Hang ; van den Bergh, Wessel ; Zhang, Ruizhuo ; Indris, Sylvio ; Kondrakov, Aleksandr ; Janek, Jürgen ; Brezesinski, Torsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2424-1d1152fb5129404a6dfccc64ada289ade3b59b742e6ad1d0a16dc35b5878c1ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Charge materials</topic><topic>Cobalt</topic><topic>Decoupling</topic><topic>Density functional theory</topic><topic>Electrode materials</topic><topic>first‐cycle capacity loss</topic><topic>Ion exchange</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Manganese</topic><topic>Materials substitution</topic><topic>Nickel</topic><topic>Ni‐rich cathode</topic><topic>Point defects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karger, Leonhard</creatorcontrib><creatorcontrib>Korneychuk, Svetlana</creatorcontrib><creatorcontrib>Sicolo, Sabrina</creatorcontrib><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>van den Bergh, Wessel</creatorcontrib><creatorcontrib>Zhang, Ruizhuo</creatorcontrib><creatorcontrib>Indris, Sylvio</creatorcontrib><creatorcontrib>Kondrakov, Aleksandr</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><creatorcontrib>Brezesinski, Torsten</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karger, Leonhard</au><au>Korneychuk, Svetlana</au><au>Sicolo, Sabrina</au><au>Li, Hang</au><au>van den Bergh, Wessel</au><au>Zhang, Ruizhuo</au><au>Indris, Sylvio</au><au>Kondrakov, Aleksandr</au><au>Janek, Jürgen</au><au>Brezesinski, Torsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoupling Substitution Effects from Point Defects in Layered Ni‐Rich Oxide Cathode Materials for Lithium‐Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>41</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Ni‐rich LiNixCoyMnzO2 cathode materials offer high practical capacities and good rate capability, but are notorious for being unstable at high state of charge. Here, a series of such layered oxides with nickel contents ranging from 88 to 100 mol% is fabricated by sodium‐to‐lithium ion exchange, yielding materials devoid of NiLi•${\mathrm{Ni}}_{{\mathrm{Li}}}^ \bullet $ substitutional defects. Examining the initial charge/discharge cycle reveals effects that are specifically caused by transition‐metal substitution, which would otherwise be obscured by changes in lithium‐site defect concentration. Lowering the nickel content helps to stabilize the high‐voltage regime, while simultaneously negatively affecting lithium diffusion. Operando X‐ray diffraction indicates mitigation of volume variation during cycling and transition toward solid‐solution behavior with sufficiently high cobalt and manganese contents, thus providing an explanation for the increased stability. The interplay between transition‐metal substitution, kinetic hindrance, and solid‐solution behavior may be a result of local inhomogeneities due to lithium‐vacancy pinning, which is further elucidated through density functional theory calculations. Overall, this work sheds new light on the effects of manganese and cobalt incorporation into the transition‐metal layer and their conjunction with NiLi•${\mathrm{Ni}}_{{\mathrm{Li}}}^ \bullet $ defects. Nickel substitution strongly impacts the electrochemistry of layered Ni‐rich oxide cathode materials. In particular, changes in composition alter the defect concentration, rendering substitution‐based structure‐property relationships ambiguous. In this work, the nickel content is varied while maintaining defect‐free character, thus allowing for selective study of substitution effects.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202402444</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1465-2854</orcidid><orcidid>https://orcid.org/0000-0002-3078-7161</orcidid><orcidid>https://orcid.org/0000-0002-3972-452X</orcidid><orcidid>https://orcid.org/0000-0002-5100-113X</orcidid><orcidid>https://orcid.org/0000-0003-0292-5026</orcidid><orcidid>https://orcid.org/0000-0002-4336-263X</orcidid><orcidid>https://orcid.org/0000-0002-9221-4756</orcidid><orcidid>https://orcid.org/0009-0007-1231-2799</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10, Vol.34 (41), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3113484016
source Wiley
subjects Cathodes
Charge materials
Cobalt
Decoupling
Density functional theory
Electrode materials
first‐cycle capacity loss
Ion exchange
Lithium
Lithium-ion batteries
Manganese
Materials substitution
Nickel
Ni‐rich cathode
Point defects
title Decoupling Substitution Effects from Point Defects in Layered Ni‐Rich Oxide Cathode Materials for Lithium‐Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoupling%20Substitution%20Effects%20from%20Point%20Defects%20in%20Layered%20Ni%E2%80%90Rich%20Oxide%20Cathode%20Materials%20for%20Lithium%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Karger,%20Leonhard&rft.date=2024-10-01&rft.volume=34&rft.issue=41&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202402444&rft_dat=%3Cproquest_cross%3E3113484016%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2424-1d1152fb5129404a6dfccc64ada289ade3b59b742e6ad1d0a16dc35b5878c1ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3113484016&rft_id=info:pmid/&rfr_iscdi=true