Loading…

The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings

ABSTRACT Using cosmological simulations of galaxy cluster regions from The Three Hundred project, we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperat...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2024-01, Vol.527 (1), p.1301-1316
Main Authors: Rost, Agustín M, Nuza, Sebastián E, Stasyszyn, Federico, Kuchner, Ulrike, Hoeft, Matthias, Welker, Charlotte, Pearce, Frazer, Gray, Meghan, Knebe, Alexander, Cui, Weiguang, Yepes, Gustavo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-8fd41b739ff284ac2b526c9e5f163115661908e3dacc9f9b499328e57faf10083
cites cdi_FETCH-LOGICAL-c341t-8fd41b739ff284ac2b526c9e5f163115661908e3dacc9f9b499328e57faf10083
container_end_page 1316
container_issue 1
container_start_page 1301
container_title Monthly notices of the Royal Astronomical Society
container_volume 527
creator Rost, Agustín M
Nuza, Sebastián E
Stasyszyn, Federico
Kuchner, Ulrike
Hoeft, Matthias
Welker, Charlotte
Pearce, Frazer
Gray, Meghan
Knebe, Alexander
Cui, Weiguang
Yepes, Gustavo
description ABSTRACT Using cosmological simulations of galaxy cluster regions from The Three Hundred project, we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperature, pressure, entropy and Mach number and construct one-dimensional profiles for a sample of larger, radially oriented filaments to determine their characteristic features as cosmological objects. Despite the similarity in velocity space between the gas and dark matter accretion patterns on to filaments and their central clusters, we confirm some differences, especially concerning the more ordered radial velocity dispersion of dark matter around the cluster and the larger accretion velocity of gas relative to dark matter in filaments. We also study the distribution of shocked gas around filaments and galaxy clusters, showing that the surrounding shocks allow an efficient internal transport of material, suggesting a laminar infall. The stacked temperature profile of filaments is typically colder towards the spine, in line with the cosmological rarefaction of matter. Therefore, filaments are able to isolate their inner regions, maintaining lower gas temperatures and entropy. Finally, we study the evolution of the gas density–temperature phase diagram of our stacked filament, showing that filamentary gas does not behave fully adiabatically through time but it is subject to shocks during its evolution, establishing a characteristic z = 0, entropy-enhanced distribution at intermediate distances from the spine of about $1{-}2\, h^{-1}\,$ Mpc for a typical galaxy cluster in our sample.
doi_str_mv 10.1093/mnras/stad3208
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113496044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stad3208</oup_id><sourcerecordid>3113496044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-8fd41b739ff284ac2b526c9e5f163115661908e3dacc9f9b499328e57faf10083</originalsourceid><addsrcrecordid>eNqFUMtKAzEUDaJgrW5dB1wJTptMMunEnYgvKLip6yHN3HSmzqPmZsD-gx9t-nDt6sA9L-4h5JqzCWdaTNvOG5xiMKVIWX5CRlyoLEm1UqdkxJjIknzG-Tm5QFwzxqRI1Yj8LCqgofIAtBq60kNJN75fgw338Qy-7cttZ9rammZHbMCHGvCOYtXbz4imK-nKID2qkNYdxbodGhNgxzTme0ttM2AAT13dmBa6gHtbjK89xcH7PjbX3QovyZkzDcLVEcfk4_lp8fiazN9f3h4f5okVkockd6Xky5nQzqW5NDZdZqmyGjLHleA8U4prloMojbXa6aXUWqQ5ZDNnHGcsF2Nyc8iNH30NgKFY94PvYmUR_UJqxaSMqslBZX2P6MEVG1-3xm8Lzord4sV-8eJv8Wi4PRj6YfOf9hfpY4eh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113496044</pqid></control><display><type>article</type><title>The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings</title><source>Oxford University Press Open Access</source><source>EZB Electronic Journals Library</source><creator>Rost, Agustín M ; Nuza, Sebastián E ; Stasyszyn, Federico ; Kuchner, Ulrike ; Hoeft, Matthias ; Welker, Charlotte ; Pearce, Frazer ; Gray, Meghan ; Knebe, Alexander ; Cui, Weiguang ; Yepes, Gustavo</creator><creatorcontrib>Rost, Agustín M ; Nuza, Sebastián E ; Stasyszyn, Federico ; Kuchner, Ulrike ; Hoeft, Matthias ; Welker, Charlotte ; Pearce, Frazer ; Gray, Meghan ; Knebe, Alexander ; Cui, Weiguang ; Yepes, Gustavo</creatorcontrib><description>ABSTRACT Using cosmological simulations of galaxy cluster regions from The Three Hundred project, we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperature, pressure, entropy and Mach number and construct one-dimensional profiles for a sample of larger, radially oriented filaments to determine their characteristic features as cosmological objects. Despite the similarity in velocity space between the gas and dark matter accretion patterns on to filaments and their central clusters, we confirm some differences, especially concerning the more ordered radial velocity dispersion of dark matter around the cluster and the larger accretion velocity of gas relative to dark matter in filaments. We also study the distribution of shocked gas around filaments and galaxy clusters, showing that the surrounding shocks allow an efficient internal transport of material, suggesting a laminar infall. The stacked temperature profile of filaments is typically colder towards the spine, in line with the cosmological rarefaction of matter. Therefore, filaments are able to isolate their inner regions, maintaining lower gas temperatures and entropy. Finally, we study the evolution of the gas density–temperature phase diagram of our stacked filament, showing that filamentary gas does not behave fully adiabatically through time but it is subject to shocks during its evolution, establishing a characteristic z = 0, entropy-enhanced distribution at intermediate distances from the spine of about $1{-}2\, h^{-1}\,$ Mpc for a typical galaxy cluster in our sample.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stad3208</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Dark matter ; Entropy ; Filaments ; Galactic clusters ; Galaxy distribution ; Gas density ; Gas dynamics ; Mach number ; Phase diagrams ; Radial velocity ; Rarefaction ; Temperature ; Temperature profiles</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2024-01, Vol.527 (1), p.1301-1316</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-8fd41b739ff284ac2b526c9e5f163115661908e3dacc9f9b499328e57faf10083</citedby><cites>FETCH-LOGICAL-c341t-8fd41b739ff284ac2b526c9e5f163115661908e3dacc9f9b499328e57faf10083</cites><orcidid>0000-0002-0035-5202 ; 0000-0001-5571-1369 ; 0000-0002-2113-4863 ; 0000-0001-5031-7936 ; 0000-0002-5118-3594 ; 0000-0002-8501-676X ; 0000-0001-5576-0144 ; 0000-0003-4066-8307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1601,27907,27908</link.rule.ids></links><search><creatorcontrib>Rost, Agustín M</creatorcontrib><creatorcontrib>Nuza, Sebastián E</creatorcontrib><creatorcontrib>Stasyszyn, Federico</creatorcontrib><creatorcontrib>Kuchner, Ulrike</creatorcontrib><creatorcontrib>Hoeft, Matthias</creatorcontrib><creatorcontrib>Welker, Charlotte</creatorcontrib><creatorcontrib>Pearce, Frazer</creatorcontrib><creatorcontrib>Gray, Meghan</creatorcontrib><creatorcontrib>Knebe, Alexander</creatorcontrib><creatorcontrib>Cui, Weiguang</creatorcontrib><creatorcontrib>Yepes, Gustavo</creatorcontrib><title>The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Using cosmological simulations of galaxy cluster regions from The Three Hundred project, we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperature, pressure, entropy and Mach number and construct one-dimensional profiles for a sample of larger, radially oriented filaments to determine their characteristic features as cosmological objects. Despite the similarity in velocity space between the gas and dark matter accretion patterns on to filaments and their central clusters, we confirm some differences, especially concerning the more ordered radial velocity dispersion of dark matter around the cluster and the larger accretion velocity of gas relative to dark matter in filaments. We also study the distribution of shocked gas around filaments and galaxy clusters, showing that the surrounding shocks allow an efficient internal transport of material, suggesting a laminar infall. The stacked temperature profile of filaments is typically colder towards the spine, in line with the cosmological rarefaction of matter. Therefore, filaments are able to isolate their inner regions, maintaining lower gas temperatures and entropy. Finally, we study the evolution of the gas density–temperature phase diagram of our stacked filament, showing that filamentary gas does not behave fully adiabatically through time but it is subject to shocks during its evolution, establishing a characteristic z = 0, entropy-enhanced distribution at intermediate distances from the spine of about $1{-}2\, h^{-1}\,$ Mpc for a typical galaxy cluster in our sample.</description><subject>Dark matter</subject><subject>Entropy</subject><subject>Filaments</subject><subject>Galactic clusters</subject><subject>Galaxy distribution</subject><subject>Gas density</subject><subject>Gas dynamics</subject><subject>Mach number</subject><subject>Phase diagrams</subject><subject>Radial velocity</subject><subject>Rarefaction</subject><subject>Temperature</subject><subject>Temperature profiles</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFUMtKAzEUDaJgrW5dB1wJTptMMunEnYgvKLip6yHN3HSmzqPmZsD-gx9t-nDt6sA9L-4h5JqzCWdaTNvOG5xiMKVIWX5CRlyoLEm1UqdkxJjIknzG-Tm5QFwzxqRI1Yj8LCqgofIAtBq60kNJN75fgw338Qy-7cttZ9rammZHbMCHGvCOYtXbz4imK-nKID2qkNYdxbodGhNgxzTme0ttM2AAT13dmBa6gHtbjK89xcH7PjbX3QovyZkzDcLVEcfk4_lp8fiazN9f3h4f5okVkockd6Xky5nQzqW5NDZdZqmyGjLHleA8U4prloMojbXa6aXUWqQ5ZDNnHGcsF2Nyc8iNH30NgKFY94PvYmUR_UJqxaSMqslBZX2P6MEVG1-3xm8Lzord4sV-8eJv8Wi4PRj6YfOf9hfpY4eh</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Rost, Agustín M</creator><creator>Nuza, Sebastián E</creator><creator>Stasyszyn, Federico</creator><creator>Kuchner, Ulrike</creator><creator>Hoeft, Matthias</creator><creator>Welker, Charlotte</creator><creator>Pearce, Frazer</creator><creator>Gray, Meghan</creator><creator>Knebe, Alexander</creator><creator>Cui, Weiguang</creator><creator>Yepes, Gustavo</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0035-5202</orcidid><orcidid>https://orcid.org/0000-0001-5571-1369</orcidid><orcidid>https://orcid.org/0000-0002-2113-4863</orcidid><orcidid>https://orcid.org/0000-0001-5031-7936</orcidid><orcidid>https://orcid.org/0000-0002-5118-3594</orcidid><orcidid>https://orcid.org/0000-0002-8501-676X</orcidid><orcidid>https://orcid.org/0000-0001-5576-0144</orcidid><orcidid>https://orcid.org/0000-0003-4066-8307</orcidid></search><sort><creationdate>20240101</creationdate><title>The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings</title><author>Rost, Agustín M ; Nuza, Sebastián E ; Stasyszyn, Federico ; Kuchner, Ulrike ; Hoeft, Matthias ; Welker, Charlotte ; Pearce, Frazer ; Gray, Meghan ; Knebe, Alexander ; Cui, Weiguang ; Yepes, Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-8fd41b739ff284ac2b526c9e5f163115661908e3dacc9f9b499328e57faf10083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dark matter</topic><topic>Entropy</topic><topic>Filaments</topic><topic>Galactic clusters</topic><topic>Galaxy distribution</topic><topic>Gas density</topic><topic>Gas dynamics</topic><topic>Mach number</topic><topic>Phase diagrams</topic><topic>Radial velocity</topic><topic>Rarefaction</topic><topic>Temperature</topic><topic>Temperature profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rost, Agustín M</creatorcontrib><creatorcontrib>Nuza, Sebastián E</creatorcontrib><creatorcontrib>Stasyszyn, Federico</creatorcontrib><creatorcontrib>Kuchner, Ulrike</creatorcontrib><creatorcontrib>Hoeft, Matthias</creatorcontrib><creatorcontrib>Welker, Charlotte</creatorcontrib><creatorcontrib>Pearce, Frazer</creatorcontrib><creatorcontrib>Gray, Meghan</creatorcontrib><creatorcontrib>Knebe, Alexander</creatorcontrib><creatorcontrib>Cui, Weiguang</creatorcontrib><creatorcontrib>Yepes, Gustavo</creatorcontrib><collection>Oxford University Press Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rost, Agustín M</au><au>Nuza, Sebastián E</au><au>Stasyszyn, Federico</au><au>Kuchner, Ulrike</au><au>Hoeft, Matthias</au><au>Welker, Charlotte</au><au>Pearce, Frazer</au><au>Gray, Meghan</au><au>Knebe, Alexander</au><au>Cui, Weiguang</au><au>Yepes, Gustavo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>527</volume><issue>1</issue><spage>1301</spage><epage>1316</epage><pages>1301-1316</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Using cosmological simulations of galaxy cluster regions from The Three Hundred project, we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperature, pressure, entropy and Mach number and construct one-dimensional profiles for a sample of larger, radially oriented filaments to determine their characteristic features as cosmological objects. Despite the similarity in velocity space between the gas and dark matter accretion patterns on to filaments and their central clusters, we confirm some differences, especially concerning the more ordered radial velocity dispersion of dark matter around the cluster and the larger accretion velocity of gas relative to dark matter in filaments. We also study the distribution of shocked gas around filaments and galaxy clusters, showing that the surrounding shocks allow an efficient internal transport of material, suggesting a laminar infall. The stacked temperature profile of filaments is typically colder towards the spine, in line with the cosmological rarefaction of matter. Therefore, filaments are able to isolate their inner regions, maintaining lower gas temperatures and entropy. Finally, we study the evolution of the gas density–temperature phase diagram of our stacked filament, showing that filamentary gas does not behave fully adiabatically through time but it is subject to shocks during its evolution, establishing a characteristic z = 0, entropy-enhanced distribution at intermediate distances from the spine of about $1{-}2\, h^{-1}\,$ Mpc for a typical galaxy cluster in our sample.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stad3208</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0035-5202</orcidid><orcidid>https://orcid.org/0000-0001-5571-1369</orcidid><orcidid>https://orcid.org/0000-0002-2113-4863</orcidid><orcidid>https://orcid.org/0000-0001-5031-7936</orcidid><orcidid>https://orcid.org/0000-0002-5118-3594</orcidid><orcidid>https://orcid.org/0000-0002-8501-676X</orcidid><orcidid>https://orcid.org/0000-0001-5576-0144</orcidid><orcidid>https://orcid.org/0000-0003-4066-8307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2024-01, Vol.527 (1), p.1301-1316
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_journals_3113496044
source Oxford University Press Open Access; EZB Electronic Journals Library
subjects Dark matter
Entropy
Filaments
Galactic clusters
Galaxy distribution
Gas density
Gas dynamics
Mach number
Phase diagrams
Radial velocity
Rarefaction
Temperature
Temperature profiles
title The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20three%20hundred%20project:%20thermodynamical%20properties,%20shocks,%20and%20gas%20dynamics%20in%20simulated%20galaxy%20cluster%20filaments%20and%20their%20surroundings&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Rost,%20Agust%C3%ADn%20M&rft.date=2024-01-01&rft.volume=527&rft.issue=1&rft.spage=1301&rft.epage=1316&rft.pages=1301-1316&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stad3208&rft_dat=%3Cproquest_cross%3E3113496044%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-8fd41b739ff284ac2b526c9e5f163115661908e3dacc9f9b499328e57faf10083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3113496044&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stad3208&rfr_iscdi=true