Loading…
Asymptotic analysis of MHD chemically reacting boundary layer flow of Jeffrey hybrid nanofluid
Fluids with enhanced heat transport characteristics are essential for efficient convection heat transportation. Hybrid nanofluids have demonstrated their effectiveness as viable substitutes for conventional heat transport fluids. This study explores the heat and mass exchange occurring within a chem...
Saved in:
Published in: | Zeitschrift für angewandte Mathematik und Mechanik 2024-09, Vol.104 (9), p.n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2020-1f25a9845720ee6733f0135f2995851df0ced16f6445694bb908fa9ba3f69ca63 |
container_end_page | n/a |
container_issue | 9 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 104 |
creator | Kathuroju, Santhosh Kumar Prashar, Preeti Ojjela, Odelu |
description | Fluids with enhanced heat transport characteristics are essential for efficient convection heat transportation. Hybrid nanofluids have demonstrated their effectiveness as viable substitutes for conventional heat transport fluids. This study explores the heat and mass exchange occurring within a chemically reactive, unsteady boundary layer flow of a copper oxide‐multi‐walled carbon nanotubes (CuO‐MWCNTs)/ethylene glycol Jeffrey hybrid nanofluid. Additionally, the influence of heat source/sink effects in a hydromagnetic environment is carefully added. The study employs a non‐Newtonian flow model and incorporates the Arrhenius activation energy for analysis. The hybrid nanofluid consists of a base fluid, ethylene glycol, enriched with copper oxide nanoparticles and multi‐walled carbon nanotubes. The governing coupled non‐linear partial differential equations are transformed into ordinary differential equations using similarity transformations, considering appropriate free stream, and wall boundary conditions; then, the Shooting method is employed to solve the resulting ordinary differential equations (ODEs) in MATLAB. The graphical and numerical outcomes are studied for various parameter combinations. The graphs illustrate the numerical results for the CuO‐MWCNTs/ethylene glycol hybrid nanofluid. These results are comprehensively discussed to analyze the influence of different thermo‐fluidic parameters on the Jeffrey hybrid nanofluid's heat, mass, and flow characteristics. The skin friction, Nusselt number, and Sherwood number are provided in a numerical table that displays the alterations of these parameters across various parameter values. As the Jeffrey fluid parameter rises, the Nusselt number and skin friction escalate, while the Sherwood number diminishes. Conversely, as the Deborah number rises, the Nusselt number and skin friction decline, but the Sherwood number increases. A comparative analysis with published results confirms the consistency of the present results. |
doi_str_mv | 10.1002/zamm.202300770 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3114129772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114129772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2020-1f25a9845720ee6733f0135f2995851df0ced16f6445694bb908fa9ba3f69ca63</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXzwHPWyfJfjTHUj-qWLzoxYMhm01sSnZTky0l_nq3VPToaWB4nmHeF6FLAhMCQK-_ZNtOKFAGUFVwhEakoCTLAcgxGgHkeUZpWZ2isxjXMGw5YSP0Poup3fS-twrLTroUbcTe4OXiBquVbq2SziUctFS97T5w7bddI0PCTiYdsHF-t8cftTFBJ7xKdbAN7mTnjdva5hydGOmivviZY_R6d_syX2RPz_cP89lTpoaHISOGFpJP86KioHVZMWaAsMJQzotpQRoDSjekNGWeFyXP65rD1EheS2ZKrmTJxujqcHcT_OdWx16s_TYMeaJghOSE8qqiAzU5UCr4GIM2YhNsO6QRBMS-Q7HvUPx2OAj8IOys0-kfWrzNlss_9xuqcHXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114129772</pqid></control><display><type>article</type><title>Asymptotic analysis of MHD chemically reacting boundary layer flow of Jeffrey hybrid nanofluid</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kathuroju, Santhosh Kumar ; Prashar, Preeti ; Ojjela, Odelu</creator><creatorcontrib>Kathuroju, Santhosh Kumar ; Prashar, Preeti ; Ojjela, Odelu</creatorcontrib><description>Fluids with enhanced heat transport characteristics are essential for efficient convection heat transportation. Hybrid nanofluids have demonstrated their effectiveness as viable substitutes for conventional heat transport fluids. This study explores the heat and mass exchange occurring within a chemically reactive, unsteady boundary layer flow of a copper oxide‐multi‐walled carbon nanotubes (CuO‐MWCNTs)/ethylene glycol Jeffrey hybrid nanofluid. Additionally, the influence of heat source/sink effects in a hydromagnetic environment is carefully added. The study employs a non‐Newtonian flow model and incorporates the Arrhenius activation energy for analysis. The hybrid nanofluid consists of a base fluid, ethylene glycol, enriched with copper oxide nanoparticles and multi‐walled carbon nanotubes. The governing coupled non‐linear partial differential equations are transformed into ordinary differential equations using similarity transformations, considering appropriate free stream, and wall boundary conditions; then, the Shooting method is employed to solve the resulting ordinary differential equations (ODEs) in MATLAB. The graphical and numerical outcomes are studied for various parameter combinations. The graphs illustrate the numerical results for the CuO‐MWCNTs/ethylene glycol hybrid nanofluid. These results are comprehensively discussed to analyze the influence of different thermo‐fluidic parameters on the Jeffrey hybrid nanofluid's heat, mass, and flow characteristics. The skin friction, Nusselt number, and Sherwood number are provided in a numerical table that displays the alterations of these parameters across various parameter values. As the Jeffrey fluid parameter rises, the Nusselt number and skin friction escalate, while the Sherwood number diminishes. Conversely, as the Deborah number rises, the Nusselt number and skin friction decline, but the Sherwood number increases. A comparative analysis with published results confirms the consistency of the present results.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.202300770</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; Boundary layer flow ; Copper oxides ; Coupled walls ; Deborah number ; Ethylene glycol ; Flow characteristics ; Fluid flow ; Friction ; Heat exchange ; Multi wall carbon nanotubes ; Nanofluids ; Nusselt number ; Ordinary differential equations ; Parameters ; Partial differential equations ; Skin friction ; Transport properties</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2024-09, Vol.104 (9), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2020-1f25a9845720ee6733f0135f2995851df0ced16f6445694bb908fa9ba3f69ca63</cites><orcidid>0000-0002-9197-8113 ; 0000-0001-6577-6051 ; 0009-0007-0946-9904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kathuroju, Santhosh Kumar</creatorcontrib><creatorcontrib>Prashar, Preeti</creatorcontrib><creatorcontrib>Ojjela, Odelu</creatorcontrib><title>Asymptotic analysis of MHD chemically reacting boundary layer flow of Jeffrey hybrid nanofluid</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>Fluids with enhanced heat transport characteristics are essential for efficient convection heat transportation. Hybrid nanofluids have demonstrated their effectiveness as viable substitutes for conventional heat transport fluids. This study explores the heat and mass exchange occurring within a chemically reactive, unsteady boundary layer flow of a copper oxide‐multi‐walled carbon nanotubes (CuO‐MWCNTs)/ethylene glycol Jeffrey hybrid nanofluid. Additionally, the influence of heat source/sink effects in a hydromagnetic environment is carefully added. The study employs a non‐Newtonian flow model and incorporates the Arrhenius activation energy for analysis. The hybrid nanofluid consists of a base fluid, ethylene glycol, enriched with copper oxide nanoparticles and multi‐walled carbon nanotubes. The governing coupled non‐linear partial differential equations are transformed into ordinary differential equations using similarity transformations, considering appropriate free stream, and wall boundary conditions; then, the Shooting method is employed to solve the resulting ordinary differential equations (ODEs) in MATLAB. The graphical and numerical outcomes are studied for various parameter combinations. The graphs illustrate the numerical results for the CuO‐MWCNTs/ethylene glycol hybrid nanofluid. These results are comprehensively discussed to analyze the influence of different thermo‐fluidic parameters on the Jeffrey hybrid nanofluid's heat, mass, and flow characteristics. The skin friction, Nusselt number, and Sherwood number are provided in a numerical table that displays the alterations of these parameters across various parameter values. As the Jeffrey fluid parameter rises, the Nusselt number and skin friction escalate, while the Sherwood number diminishes. Conversely, as the Deborah number rises, the Nusselt number and skin friction decline, but the Sherwood number increases. A comparative analysis with published results confirms the consistency of the present results.</description><subject>Boundary conditions</subject><subject>Boundary layer flow</subject><subject>Copper oxides</subject><subject>Coupled walls</subject><subject>Deborah number</subject><subject>Ethylene glycol</subject><subject>Flow characteristics</subject><subject>Fluid flow</subject><subject>Friction</subject><subject>Heat exchange</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanofluids</subject><subject>Nusselt number</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Skin friction</subject><subject>Transport properties</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtXzwHPWyfJfjTHUj-qWLzoxYMhm01sSnZTky0l_nq3VPToaWB4nmHeF6FLAhMCQK-_ZNtOKFAGUFVwhEakoCTLAcgxGgHkeUZpWZ2isxjXMGw5YSP0Poup3fS-twrLTroUbcTe4OXiBquVbq2SziUctFS97T5w7bddI0PCTiYdsHF-t8cftTFBJ7xKdbAN7mTnjdva5hydGOmivviZY_R6d_syX2RPz_cP89lTpoaHISOGFpJP86KioHVZMWaAsMJQzotpQRoDSjekNGWeFyXP65rD1EheS2ZKrmTJxujqcHcT_OdWx16s_TYMeaJghOSE8qqiAzU5UCr4GIM2YhNsO6QRBMS-Q7HvUPx2OAj8IOys0-kfWrzNlss_9xuqcHXQ</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Kathuroju, Santhosh Kumar</creator><creator>Prashar, Preeti</creator><creator>Ojjela, Odelu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9197-8113</orcidid><orcidid>https://orcid.org/0000-0001-6577-6051</orcidid><orcidid>https://orcid.org/0009-0007-0946-9904</orcidid></search><sort><creationdate>202409</creationdate><title>Asymptotic analysis of MHD chemically reacting boundary layer flow of Jeffrey hybrid nanofluid</title><author>Kathuroju, Santhosh Kumar ; Prashar, Preeti ; Ojjela, Odelu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2020-1f25a9845720ee6733f0135f2995851df0ced16f6445694bb908fa9ba3f69ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Boundary layer flow</topic><topic>Copper oxides</topic><topic>Coupled walls</topic><topic>Deborah number</topic><topic>Ethylene glycol</topic><topic>Flow characteristics</topic><topic>Fluid flow</topic><topic>Friction</topic><topic>Heat exchange</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanofluids</topic><topic>Nusselt number</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Skin friction</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kathuroju, Santhosh Kumar</creatorcontrib><creatorcontrib>Prashar, Preeti</creatorcontrib><creatorcontrib>Ojjela, Odelu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kathuroju, Santhosh Kumar</au><au>Prashar, Preeti</au><au>Ojjela, Odelu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic analysis of MHD chemically reacting boundary layer flow of Jeffrey hybrid nanofluid</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2024-09</date><risdate>2024</risdate><volume>104</volume><issue>9</issue><epage>n/a</epage><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>Fluids with enhanced heat transport characteristics are essential for efficient convection heat transportation. Hybrid nanofluids have demonstrated their effectiveness as viable substitutes for conventional heat transport fluids. This study explores the heat and mass exchange occurring within a chemically reactive, unsteady boundary layer flow of a copper oxide‐multi‐walled carbon nanotubes (CuO‐MWCNTs)/ethylene glycol Jeffrey hybrid nanofluid. Additionally, the influence of heat source/sink effects in a hydromagnetic environment is carefully added. The study employs a non‐Newtonian flow model and incorporates the Arrhenius activation energy for analysis. The hybrid nanofluid consists of a base fluid, ethylene glycol, enriched with copper oxide nanoparticles and multi‐walled carbon nanotubes. The governing coupled non‐linear partial differential equations are transformed into ordinary differential equations using similarity transformations, considering appropriate free stream, and wall boundary conditions; then, the Shooting method is employed to solve the resulting ordinary differential equations (ODEs) in MATLAB. The graphical and numerical outcomes are studied for various parameter combinations. The graphs illustrate the numerical results for the CuO‐MWCNTs/ethylene glycol hybrid nanofluid. These results are comprehensively discussed to analyze the influence of different thermo‐fluidic parameters on the Jeffrey hybrid nanofluid's heat, mass, and flow characteristics. The skin friction, Nusselt number, and Sherwood number are provided in a numerical table that displays the alterations of these parameters across various parameter values. As the Jeffrey fluid parameter rises, the Nusselt number and skin friction escalate, while the Sherwood number diminishes. Conversely, as the Deborah number rises, the Nusselt number and skin friction decline, but the Sherwood number increases. A comparative analysis with published results confirms the consistency of the present results.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.202300770</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9197-8113</orcidid><orcidid>https://orcid.org/0000-0001-6577-6051</orcidid><orcidid>https://orcid.org/0009-0007-0946-9904</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2024-09, Vol.104 (9), p.n/a |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_proquest_journals_3114129772 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Boundary conditions Boundary layer flow Copper oxides Coupled walls Deborah number Ethylene glycol Flow characteristics Fluid flow Friction Heat exchange Multi wall carbon nanotubes Nanofluids Nusselt number Ordinary differential equations Parameters Partial differential equations Skin friction Transport properties |
title | Asymptotic analysis of MHD chemically reacting boundary layer flow of Jeffrey hybrid nanofluid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20analysis%20of%20MHD%20chemically%20reacting%20boundary%20layer%20flow%20of%20Jeffrey%20hybrid%20nanofluid&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Kathuroju,%20Santhosh%20Kumar&rft.date=2024-09&rft.volume=104&rft.issue=9&rft.epage=n/a&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.202300770&rft_dat=%3Cproquest_cross%3E3114129772%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2020-1f25a9845720ee6733f0135f2995851df0ced16f6445694bb908fa9ba3f69ca63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3114129772&rft_id=info:pmid/&rfr_iscdi=true |