Loading…

Common substring with shifts in b-ary expansions

Denote by S n ( x , y ) the length of the longest common substring of x and y with shifts in their first n digits of the b -ary expansions. We show that the sets of pairs ( x ,  y ), for which the growth rate of S n ( x , y ) is α log n with 0 ≤ α ≤ ∞ , have full Hausdorff dimension. Our method reli...

Full description

Saved in:
Bibliographic Details
Published in:Archiv der Mathematik 2024-10, Vol.123 (4), p.369-377
Main Authors: Liao, Xin, Yu, Dingding
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-c9206eeef4aeafcc06d7c750c6577ba6584d741506166a29aa97ea32899a6be23
container_end_page 377
container_issue 4
container_start_page 369
container_title Archiv der Mathematik
container_volume 123
creator Liao, Xin
Yu, Dingding
description Denote by S n ( x , y ) the length of the longest common substring of x and y with shifts in their first n digits of the b -ary expansions. We show that the sets of pairs ( x ,  y ), for which the growth rate of S n ( x , y ) is α log n with 0 ≤ α ≤ ∞ , have full Hausdorff dimension. Our method relies upon some estimation of the spectral radius of matrices.
doi_str_mv 10.1007/s00013-024-02038-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3114484647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114484647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-c9206eeef4aeafcc06d7c750c6577ba6584d741506166a29aa97ea32899a6be23</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9HJR_NxlOIXLHhR8BbSbOp2cduaaVH_vVkrePMwzGHe952Zh5BzBpcMQF8hADBBgctcIAxlB2TBJAdqrDCHZJHnghpjX47JCeI2q7nRdkGg6ne7vitwqnFMbfdafLTjpsBN24xYtF1RU5--ivg5-A7bvsNTctT4N4xnv31Jnm9vnqp7unq8e6iuVzRwgJEGy0HFGBvpo29CALXWQZcQVKl17VVp5FpLVoJiSnluvbc6esGNtV7VkYsluZhzh9S_TxFHt-2n1OWVTjAmpZFK6qzisyqkHjHFxg2p3eWLHQO3J-NmMi6TcT9kHMsmMZtw2H8c01_0P65vVg1lQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114484647</pqid></control><display><type>article</type><title>Common substring with shifts in b-ary expansions</title><source>Springer Link</source><creator>Liao, Xin ; Yu, Dingding</creator><creatorcontrib>Liao, Xin ; Yu, Dingding</creatorcontrib><description>Denote by S n ( x , y ) the length of the longest common substring of x and y with shifts in their first n digits of the b -ary expansions. We show that the sets of pairs ( x ,  y ), for which the growth rate of S n ( x , y ) is α log n with 0 ≤ α ≤ ∞ , have full Hausdorff dimension. Our method relies upon some estimation of the spectral radius of matrices.</description><identifier>ISSN: 0003-889X</identifier><identifier>EISSN: 1420-8938</identifier><identifier>DOI: 10.1007/s00013-024-02038-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Archiv der Mathematik, 2024-10, Vol.123 (4), p.369-377</ispartof><rights>Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-c9206eeef4aeafcc06d7c750c6577ba6584d741506166a29aa97ea32899a6be23</cites><orcidid>0009-0009-7111-6872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Liao, Xin</creatorcontrib><creatorcontrib>Yu, Dingding</creatorcontrib><title>Common substring with shifts in b-ary expansions</title><title>Archiv der Mathematik</title><addtitle>Arch. Math</addtitle><description>Denote by S n ( x , y ) the length of the longest common substring of x and y with shifts in their first n digits of the b -ary expansions. We show that the sets of pairs ( x ,  y ), for which the growth rate of S n ( x , y ) is α log n with 0 ≤ α ≤ ∞ , have full Hausdorff dimension. Our method relies upon some estimation of the spectral radius of matrices.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0003-889X</issn><issn>1420-8938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9HJR_NxlOIXLHhR8BbSbOp2cduaaVH_vVkrePMwzGHe952Zh5BzBpcMQF8hADBBgctcIAxlB2TBJAdqrDCHZJHnghpjX47JCeI2q7nRdkGg6ne7vitwqnFMbfdafLTjpsBN24xYtF1RU5--ivg5-A7bvsNTctT4N4xnv31Jnm9vnqp7unq8e6iuVzRwgJEGy0HFGBvpo29CALXWQZcQVKl17VVp5FpLVoJiSnluvbc6esGNtV7VkYsluZhzh9S_TxFHt-2n1OWVTjAmpZFK6qzisyqkHjHFxg2p3eWLHQO3J-NmMi6TcT9kHMsmMZtw2H8c01_0P65vVg1lQg</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Liao, Xin</creator><creator>Yu, Dingding</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-7111-6872</orcidid></search><sort><creationdate>20241001</creationdate><title>Common substring with shifts in b-ary expansions</title><author>Liao, Xin ; Yu, Dingding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-c9206eeef4aeafcc06d7c750c6577ba6584d741506166a29aa97ea32899a6be23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Xin</creatorcontrib><creatorcontrib>Yu, Dingding</creatorcontrib><collection>CrossRef</collection><jtitle>Archiv der Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Xin</au><au>Yu, Dingding</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Common substring with shifts in b-ary expansions</atitle><jtitle>Archiv der Mathematik</jtitle><stitle>Arch. Math</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>123</volume><issue>4</issue><spage>369</spage><epage>377</epage><pages>369-377</pages><issn>0003-889X</issn><eissn>1420-8938</eissn><abstract>Denote by S n ( x , y ) the length of the longest common substring of x and y with shifts in their first n digits of the b -ary expansions. We show that the sets of pairs ( x ,  y ), for which the growth rate of S n ( x , y ) is α log n with 0 ≤ α ≤ ∞ , have full Hausdorff dimension. Our method relies upon some estimation of the spectral radius of matrices.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00013-024-02038-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0009-7111-6872</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-889X
ispartof Archiv der Mathematik, 2024-10, Vol.123 (4), p.369-377
issn 0003-889X
1420-8938
language eng
recordid cdi_proquest_journals_3114484647
source Springer Link
subjects Mathematics
Mathematics and Statistics
title Common substring with shifts in b-ary expansions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Common%20substring%20with%20shifts%20in%20b-ary%20expansions&rft.jtitle=Archiv%20der%20Mathematik&rft.au=Liao,%20Xin&rft.date=2024-10-01&rft.volume=123&rft.issue=4&rft.spage=369&rft.epage=377&rft.pages=369-377&rft.issn=0003-889X&rft.eissn=1420-8938&rft_id=info:doi/10.1007/s00013-024-02038-1&rft_dat=%3Cproquest_cross%3E3114484647%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-c9206eeef4aeafcc06d7c750c6577ba6584d741506166a29aa97ea32899a6be23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3114484647&rft_id=info:pmid/&rfr_iscdi=true