Loading…
FFT‐based computational micromechanics with Dirichlet boundary conditions on the rotated staggered grid
Imposing nonperiodic boundary conditions for unit cell analyses may be necessary for a number of reasons in applications, for example, for validation purposes and specific computational setups. The work at hand discusses a strategy for utilizing the powerful technology behind fast Fourier transform...
Saved in:
Published in: | International journal for numerical methods in engineering 2024-11, Vol.125 (21), p.n/a |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2189-6302fc69a138bf45346a04d2caadbf98f3567a3bc6ea4f2a5b7ef2b9756a96b03 |
container_end_page | n/a |
container_issue | 21 |
container_start_page | |
container_title | International journal for numerical methods in engineering |
container_volume | 125 |
creator | Risthaus, Lennart Schneider, Matti |
description | Imposing nonperiodic boundary conditions for unit cell analyses may be necessary for a number of reasons in applications, for example, for validation purposes and specific computational setups. The work at hand discusses a strategy for utilizing the powerful technology behind fast Fourier transform (FFT)‐based computational micromechanics—initially developed with periodic boundary conditions in mind—for essential boundary conditions in mechanics, as well, for the case of the discretization on a rotated staggered grid. Introduced by F. Willot into the community, the rotated staggered grid is presumably the most popular discretization, and was shown to be equivalent to underintegrated trilinear hexahedral elements. We leverage insights from previous work on the Moulinec–Suquet discretization, exploiting a finite‐strain preconditioner for small‐strain problems and utilize specific discrete sine and cosine transforms. We demonstrate the computational performance of the novel scheme by dedicated numerical experiments and compare displacement‐based methods to implementations on the deformation gradient. |
doi_str_mv | 10.1002/nme.7569 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3114637181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114637181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2189-6302fc69a138bf45346a04d2caadbf98f3567a3bc6ea4f2a5b7ef2b9756a96b03</originalsourceid><addsrcrecordid>eNp1kEFOwzAQRS0EEqUgcQRLbNik2HHixEtUGkAqsClry3bsxlUSFztR1R1H4IycBJeyZTUjzZsvvQ_ANUYzjFB613d6VuSUnYAJRqxIUIqKUzCJJ5bkrMTn4CKEDUIY54hMgK2q1ffnlxRB11C5bjsOYrCuFy3srPKu06oRvVUB7uzQwAfrrWpaPUDpxr4Wfh-f-toeXgJ0PRwaDb2LGTEuDGK91j5ua2_rS3BmRBv01d-cgvdqsZo_Jcu3x-f5_TJRKS5ZQglKjaJMYFJKk-UkowJldaqEqKVhpSE5LQSRimqRmVTkstAmlSw6C0YlIlNwc8zdevcx6jDwjRt9FAqcYJxRUuASR-r2SEXHELw2fOttF304RvxQJI9F8kOREU2O6M62ev8vx19fFr_8D_Jxdx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114637181</pqid></control><display><type>article</type><title>FFT‐based computational micromechanics with Dirichlet boundary conditions on the rotated staggered grid</title><source>Wiley</source><creator>Risthaus, Lennart ; Schneider, Matti</creator><creatorcontrib>Risthaus, Lennart ; Schneider, Matti</creatorcontrib><description>Imposing nonperiodic boundary conditions for unit cell analyses may be necessary for a number of reasons in applications, for example, for validation purposes and specific computational setups. The work at hand discusses a strategy for utilizing the powerful technology behind fast Fourier transform (FFT)‐based computational micromechanics—initially developed with periodic boundary conditions in mind—for essential boundary conditions in mechanics, as well, for the case of the discretization on a rotated staggered grid. Introduced by F. Willot into the community, the rotated staggered grid is presumably the most popular discretization, and was shown to be equivalent to underintegrated trilinear hexahedral elements. We leverage insights from previous work on the Moulinec–Suquet discretization, exploiting a finite‐strain preconditioner for small‐strain problems and utilize specific discrete sine and cosine transforms. We demonstrate the computational performance of the novel scheme by dedicated numerical experiments and compare displacement‐based methods to implementations on the deformation gradient.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.7569</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Boundary conditions ; Dirichlet boundary conditions ; discrete cosine transform ; discrete sine transform ; Discretization ; Fast Fourier transformations ; FFT‐based computational micromechanics ; Micromechanics ; rotated staggered grid ; Strain ; Unit cell</subject><ispartof>International journal for numerical methods in engineering, 2024-11, Vol.125 (21), p.n/a</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2189-6302fc69a138bf45346a04d2caadbf98f3567a3bc6ea4f2a5b7ef2b9756a96b03</cites><orcidid>0000-0001-7017-3618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Risthaus, Lennart</creatorcontrib><creatorcontrib>Schneider, Matti</creatorcontrib><title>FFT‐based computational micromechanics with Dirichlet boundary conditions on the rotated staggered grid</title><title>International journal for numerical methods in engineering</title><description>Imposing nonperiodic boundary conditions for unit cell analyses may be necessary for a number of reasons in applications, for example, for validation purposes and specific computational setups. The work at hand discusses a strategy for utilizing the powerful technology behind fast Fourier transform (FFT)‐based computational micromechanics—initially developed with periodic boundary conditions in mind—for essential boundary conditions in mechanics, as well, for the case of the discretization on a rotated staggered grid. Introduced by F. Willot into the community, the rotated staggered grid is presumably the most popular discretization, and was shown to be equivalent to underintegrated trilinear hexahedral elements. We leverage insights from previous work on the Moulinec–Suquet discretization, exploiting a finite‐strain preconditioner for small‐strain problems and utilize specific discrete sine and cosine transforms. We demonstrate the computational performance of the novel scheme by dedicated numerical experiments and compare displacement‐based methods to implementations on the deformation gradient.</description><subject>Boundary conditions</subject><subject>Dirichlet boundary conditions</subject><subject>discrete cosine transform</subject><subject>discrete sine transform</subject><subject>Discretization</subject><subject>Fast Fourier transformations</subject><subject>FFT‐based computational micromechanics</subject><subject>Micromechanics</subject><subject>rotated staggered grid</subject><subject>Strain</subject><subject>Unit cell</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kEFOwzAQRS0EEqUgcQRLbNik2HHixEtUGkAqsClry3bsxlUSFztR1R1H4IycBJeyZTUjzZsvvQ_ANUYzjFB613d6VuSUnYAJRqxIUIqKUzCJJ5bkrMTn4CKEDUIY54hMgK2q1ffnlxRB11C5bjsOYrCuFy3srPKu06oRvVUB7uzQwAfrrWpaPUDpxr4Wfh-f-toeXgJ0PRwaDb2LGTEuDGK91j5ua2_rS3BmRBv01d-cgvdqsZo_Jcu3x-f5_TJRKS5ZQglKjaJMYFJKk-UkowJldaqEqKVhpSE5LQSRimqRmVTkstAmlSw6C0YlIlNwc8zdevcx6jDwjRt9FAqcYJxRUuASR-r2SEXHELw2fOttF304RvxQJI9F8kOREU2O6M62ev8vx19fFr_8D_Jxdx0</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Risthaus, Lennart</creator><creator>Schneider, Matti</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7017-3618</orcidid></search><sort><creationdate>20241115</creationdate><title>FFT‐based computational micromechanics with Dirichlet boundary conditions on the rotated staggered grid</title><author>Risthaus, Lennart ; Schneider, Matti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2189-6302fc69a138bf45346a04d2caadbf98f3567a3bc6ea4f2a5b7ef2b9756a96b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Dirichlet boundary conditions</topic><topic>discrete cosine transform</topic><topic>discrete sine transform</topic><topic>Discretization</topic><topic>Fast Fourier transformations</topic><topic>FFT‐based computational micromechanics</topic><topic>Micromechanics</topic><topic>rotated staggered grid</topic><topic>Strain</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Risthaus, Lennart</creatorcontrib><creatorcontrib>Schneider, Matti</creatorcontrib><collection>Wiley Online Library</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Risthaus, Lennart</au><au>Schneider, Matti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FFT‐based computational micromechanics with Dirichlet boundary conditions on the rotated staggered grid</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2024-11-15</date><risdate>2024</risdate><volume>125</volume><issue>21</issue><epage>n/a</epage><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Imposing nonperiodic boundary conditions for unit cell analyses may be necessary for a number of reasons in applications, for example, for validation purposes and specific computational setups. The work at hand discusses a strategy for utilizing the powerful technology behind fast Fourier transform (FFT)‐based computational micromechanics—initially developed with periodic boundary conditions in mind—for essential boundary conditions in mechanics, as well, for the case of the discretization on a rotated staggered grid. Introduced by F. Willot into the community, the rotated staggered grid is presumably the most popular discretization, and was shown to be equivalent to underintegrated trilinear hexahedral elements. We leverage insights from previous work on the Moulinec–Suquet discretization, exploiting a finite‐strain preconditioner for small‐strain problems and utilize specific discrete sine and cosine transforms. We demonstrate the computational performance of the novel scheme by dedicated numerical experiments and compare displacement‐based methods to implementations on the deformation gradient.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.7569</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-7017-3618</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2024-11, Vol.125 (21), p.n/a |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_3114637181 |
source | Wiley |
subjects | Boundary conditions Dirichlet boundary conditions discrete cosine transform discrete sine transform Discretization Fast Fourier transformations FFT‐based computational micromechanics Micromechanics rotated staggered grid Strain Unit cell |
title | FFT‐based computational micromechanics with Dirichlet boundary conditions on the rotated staggered grid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FFT%E2%80%90based%20computational%20micromechanics%20with%20Dirichlet%20boundary%20conditions%20on%20the%20rotated%20staggered%20grid&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Risthaus,%20Lennart&rft.date=2024-11-15&rft.volume=125&rft.issue=21&rft.epage=n/a&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.7569&rft_dat=%3Cproquest_cross%3E3114637181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2189-6302fc69a138bf45346a04d2caadbf98f3567a3bc6ea4f2a5b7ef2b9756a96b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3114637181&rft_id=info:pmid/&rfr_iscdi=true |