Loading…

FFT‐based computational micromechanics with Dirichlet boundary conditions on the rotated staggered grid

Imposing nonperiodic boundary conditions for unit cell analyses may be necessary for a number of reasons in applications, for example, for validation purposes and specific computational setups. The work at hand discusses a strategy for utilizing the powerful technology behind fast Fourier transform...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2024-11, Vol.125 (21), p.n/a
Main Authors: Risthaus, Lennart, Schneider, Matti
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2189-6302fc69a138bf45346a04d2caadbf98f3567a3bc6ea4f2a5b7ef2b9756a96b03
container_end_page n/a
container_issue 21
container_start_page
container_title International journal for numerical methods in engineering
container_volume 125
creator Risthaus, Lennart
Schneider, Matti
description Imposing nonperiodic boundary conditions for unit cell analyses may be necessary for a number of reasons in applications, for example, for validation purposes and specific computational setups. The work at hand discusses a strategy for utilizing the powerful technology behind fast Fourier transform (FFT)‐based computational micromechanics—initially developed with periodic boundary conditions in mind—for essential boundary conditions in mechanics, as well, for the case of the discretization on a rotated staggered grid. Introduced by F. Willot into the community, the rotated staggered grid is presumably the most popular discretization, and was shown to be equivalent to underintegrated trilinear hexahedral elements. We leverage insights from previous work on the Moulinec–Suquet discretization, exploiting a finite‐strain preconditioner for small‐strain problems and utilize specific discrete sine and cosine transforms. We demonstrate the computational performance of the novel scheme by dedicated numerical experiments and compare displacement‐based methods to implementations on the deformation gradient.
doi_str_mv 10.1002/nme.7569
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3114637181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114637181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2189-6302fc69a138bf45346a04d2caadbf98f3567a3bc6ea4f2a5b7ef2b9756a96b03</originalsourceid><addsrcrecordid>eNp1kEFOwzAQRS0EEqUgcQRLbNik2HHixEtUGkAqsClry3bsxlUSFztR1R1H4IycBJeyZTUjzZsvvQ_ANUYzjFB613d6VuSUnYAJRqxIUIqKUzCJJ5bkrMTn4CKEDUIY54hMgK2q1ffnlxRB11C5bjsOYrCuFy3srPKu06oRvVUB7uzQwAfrrWpaPUDpxr4Wfh-f-toeXgJ0PRwaDb2LGTEuDGK91j5ua2_rS3BmRBv01d-cgvdqsZo_Jcu3x-f5_TJRKS5ZQglKjaJMYFJKk-UkowJldaqEqKVhpSE5LQSRimqRmVTkstAmlSw6C0YlIlNwc8zdevcx6jDwjRt9FAqcYJxRUuASR-r2SEXHELw2fOttF304RvxQJI9F8kOREU2O6M62ev8vx19fFr_8D_Jxdx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114637181</pqid></control><display><type>article</type><title>FFT‐based computational micromechanics with Dirichlet boundary conditions on the rotated staggered grid</title><source>Wiley</source><creator>Risthaus, Lennart ; Schneider, Matti</creator><creatorcontrib>Risthaus, Lennart ; Schneider, Matti</creatorcontrib><description>Imposing nonperiodic boundary conditions for unit cell analyses may be necessary for a number of reasons in applications, for example, for validation purposes and specific computational setups. The work at hand discusses a strategy for utilizing the powerful technology behind fast Fourier transform (FFT)‐based computational micromechanics—initially developed with periodic boundary conditions in mind—for essential boundary conditions in mechanics, as well, for the case of the discretization on a rotated staggered grid. Introduced by F. Willot into the community, the rotated staggered grid is presumably the most popular discretization, and was shown to be equivalent to underintegrated trilinear hexahedral elements. We leverage insights from previous work on the Moulinec–Suquet discretization, exploiting a finite‐strain preconditioner for small‐strain problems and utilize specific discrete sine and cosine transforms. We demonstrate the computational performance of the novel scheme by dedicated numerical experiments and compare displacement‐based methods to implementations on the deformation gradient.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.7569</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Boundary conditions ; Dirichlet boundary conditions ; discrete cosine transform ; discrete sine transform ; Discretization ; Fast Fourier transformations ; FFT‐based computational micromechanics ; Micromechanics ; rotated staggered grid ; Strain ; Unit cell</subject><ispartof>International journal for numerical methods in engineering, 2024-11, Vol.125 (21), p.n/a</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2189-6302fc69a138bf45346a04d2caadbf98f3567a3bc6ea4f2a5b7ef2b9756a96b03</cites><orcidid>0000-0001-7017-3618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Risthaus, Lennart</creatorcontrib><creatorcontrib>Schneider, Matti</creatorcontrib><title>FFT‐based computational micromechanics with Dirichlet boundary conditions on the rotated staggered grid</title><title>International journal for numerical methods in engineering</title><description>Imposing nonperiodic boundary conditions for unit cell analyses may be necessary for a number of reasons in applications, for example, for validation purposes and specific computational setups. The work at hand discusses a strategy for utilizing the powerful technology behind fast Fourier transform (FFT)‐based computational micromechanics—initially developed with periodic boundary conditions in mind—for essential boundary conditions in mechanics, as well, for the case of the discretization on a rotated staggered grid. Introduced by F. Willot into the community, the rotated staggered grid is presumably the most popular discretization, and was shown to be equivalent to underintegrated trilinear hexahedral elements. We leverage insights from previous work on the Moulinec–Suquet discretization, exploiting a finite‐strain preconditioner for small‐strain problems and utilize specific discrete sine and cosine transforms. We demonstrate the computational performance of the novel scheme by dedicated numerical experiments and compare displacement‐based methods to implementations on the deformation gradient.</description><subject>Boundary conditions</subject><subject>Dirichlet boundary conditions</subject><subject>discrete cosine transform</subject><subject>discrete sine transform</subject><subject>Discretization</subject><subject>Fast Fourier transformations</subject><subject>FFT‐based computational micromechanics</subject><subject>Micromechanics</subject><subject>rotated staggered grid</subject><subject>Strain</subject><subject>Unit cell</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kEFOwzAQRS0EEqUgcQRLbNik2HHixEtUGkAqsClry3bsxlUSFztR1R1H4IycBJeyZTUjzZsvvQ_ANUYzjFB613d6VuSUnYAJRqxIUIqKUzCJJ5bkrMTn4CKEDUIY54hMgK2q1ffnlxRB11C5bjsOYrCuFy3srPKu06oRvVUB7uzQwAfrrWpaPUDpxr4Wfh-f-toeXgJ0PRwaDb2LGTEuDGK91j5ua2_rS3BmRBv01d-cgvdqsZo_Jcu3x-f5_TJRKS5ZQglKjaJMYFJKk-UkowJldaqEqKVhpSE5LQSRimqRmVTkstAmlSw6C0YlIlNwc8zdevcx6jDwjRt9FAqcYJxRUuASR-r2SEXHELw2fOttF304RvxQJI9F8kOREU2O6M62ev8vx19fFr_8D_Jxdx0</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Risthaus, Lennart</creator><creator>Schneider, Matti</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7017-3618</orcidid></search><sort><creationdate>20241115</creationdate><title>FFT‐based computational micromechanics with Dirichlet boundary conditions on the rotated staggered grid</title><author>Risthaus, Lennart ; Schneider, Matti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2189-6302fc69a138bf45346a04d2caadbf98f3567a3bc6ea4f2a5b7ef2b9756a96b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Dirichlet boundary conditions</topic><topic>discrete cosine transform</topic><topic>discrete sine transform</topic><topic>Discretization</topic><topic>Fast Fourier transformations</topic><topic>FFT‐based computational micromechanics</topic><topic>Micromechanics</topic><topic>rotated staggered grid</topic><topic>Strain</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Risthaus, Lennart</creatorcontrib><creatorcontrib>Schneider, Matti</creatorcontrib><collection>Wiley Online Library</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Risthaus, Lennart</au><au>Schneider, Matti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FFT‐based computational micromechanics with Dirichlet boundary conditions on the rotated staggered grid</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2024-11-15</date><risdate>2024</risdate><volume>125</volume><issue>21</issue><epage>n/a</epage><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Imposing nonperiodic boundary conditions for unit cell analyses may be necessary for a number of reasons in applications, for example, for validation purposes and specific computational setups. The work at hand discusses a strategy for utilizing the powerful technology behind fast Fourier transform (FFT)‐based computational micromechanics—initially developed with periodic boundary conditions in mind—for essential boundary conditions in mechanics, as well, for the case of the discretization on a rotated staggered grid. Introduced by F. Willot into the community, the rotated staggered grid is presumably the most popular discretization, and was shown to be equivalent to underintegrated trilinear hexahedral elements. We leverage insights from previous work on the Moulinec–Suquet discretization, exploiting a finite‐strain preconditioner for small‐strain problems and utilize specific discrete sine and cosine transforms. We demonstrate the computational performance of the novel scheme by dedicated numerical experiments and compare displacement‐based methods to implementations on the deformation gradient.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.7569</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-7017-3618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2024-11, Vol.125 (21), p.n/a
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_3114637181
source Wiley
subjects Boundary conditions
Dirichlet boundary conditions
discrete cosine transform
discrete sine transform
Discretization
Fast Fourier transformations
FFT‐based computational micromechanics
Micromechanics
rotated staggered grid
Strain
Unit cell
title FFT‐based computational micromechanics with Dirichlet boundary conditions on the rotated staggered grid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FFT%E2%80%90based%20computational%20micromechanics%20with%20Dirichlet%20boundary%20conditions%20on%20the%20rotated%20staggered%20grid&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Risthaus,%20Lennart&rft.date=2024-11-15&rft.volume=125&rft.issue=21&rft.epage=n/a&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.7569&rft_dat=%3Cproquest_cross%3E3114637181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2189-6302fc69a138bf45346a04d2caadbf98f3567a3bc6ea4f2a5b7ef2b9756a96b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3114637181&rft_id=info:pmid/&rfr_iscdi=true