Loading…
University schedule generator
In the realm of educational institutions, challenging scheduling issues is course timetabling. The quest for an optimal schedule revolves around harmoniously meshing resources such as educators, subjects, students, and classrooms while avoiding conflicts and adhering to a multitude of essential and...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3156 |
creator | Chougule, Samiksha Ghuge, Krishna Kote, Abhishek Ramteke, Ashwin |
description | In the realm of educational institutions, challenging scheduling issues is course timetabling. The quest for an optimal schedule revolves around harmoniously meshing resources such as educators, subjects, students, and classrooms while avoiding conflicts and adhering to a multitude of essential and preferential constraints. This paper explores the application of various artificial intelligence (AI) and Machine Learning (ML) algorithms as a promising approach to tackle the intricate university timetabling problem. We endeavor to provide essential context and motivation for harnessing ML techniques in the development of a schedule generator. We conduct a comprehensive review of significant works, shedding light on the evolving landscape of academic timetabling solutions. |
doi_str_mv | 10.1063/5.0227935 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3115187619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115187619</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-e8f69115e0dbd0a05bd2c7fd6b47ff68b5269fa4fb719ea13c279a5ba196a71a3</originalsourceid><addsrcrecordid>eNotj11LwzAYhYMoWKcX_gBh4J3Q7X2TJmkuZfgFA2828C68aRPtmG1NWmH_3sp2dW4ezjkPY7cICwQllnIBnGsj5BnLUErMtUJ1zjIAU-S8EB-X7CqlHQA3WpcZu9u2za-PqRkO81R9-Xrc-_mnb32koYvX7CLQPvmbU87Y5vlps3rN1-8vb6vHdd4rIXNfBmUQpYfa1UAgXc0rHWrlCh2CKp3kygQqgtNoPKGopockHaFRpJHEjN0fa_vY_Yw-DXbXjbGdFq2YerGcJMxEPRypVDUDDU3X2j423xQPFsH-21tpT_biD6zQSvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3115187619</pqid></control><display><type>conference_proceeding</type><title>University schedule generator</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Chougule, Samiksha ; Ghuge, Krishna ; Kote, Abhishek ; Ramteke, Ashwin</creator><contributor>Saxena, Ankur ; Phade, Gayatri M</contributor><creatorcontrib>Chougule, Samiksha ; Ghuge, Krishna ; Kote, Abhishek ; Ramteke, Ashwin ; Saxena, Ankur ; Phade, Gayatri M</creatorcontrib><description>In the realm of educational institutions, challenging scheduling issues is course timetabling. The quest for an optimal schedule revolves around harmoniously meshing resources such as educators, subjects, students, and classrooms while avoiding conflicts and adhering to a multitude of essential and preferential constraints. This paper explores the application of various artificial intelligence (AI) and Machine Learning (ML) algorithms as a promising approach to tackle the intricate university timetabling problem. We endeavor to provide essential context and motivation for harnessing ML techniques in the development of a schedule generator. We conduct a comprehensive review of significant works, shedding light on the evolving landscape of academic timetabling solutions.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0227935</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial intelligence ; Colleges & universities ; Machine learning ; Resource scheduling ; Schedules</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3156 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Saxena, Ankur</contributor><contributor>Phade, Gayatri M</contributor><creatorcontrib>Chougule, Samiksha</creatorcontrib><creatorcontrib>Ghuge, Krishna</creatorcontrib><creatorcontrib>Kote, Abhishek</creatorcontrib><creatorcontrib>Ramteke, Ashwin</creatorcontrib><title>University schedule generator</title><title>AIP Conference Proceedings</title><description>In the realm of educational institutions, challenging scheduling issues is course timetabling. The quest for an optimal schedule revolves around harmoniously meshing resources such as educators, subjects, students, and classrooms while avoiding conflicts and adhering to a multitude of essential and preferential constraints. This paper explores the application of various artificial intelligence (AI) and Machine Learning (ML) algorithms as a promising approach to tackle the intricate university timetabling problem. We endeavor to provide essential context and motivation for harnessing ML techniques in the development of a schedule generator. We conduct a comprehensive review of significant works, shedding light on the evolving landscape of academic timetabling solutions.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Colleges & universities</subject><subject>Machine learning</subject><subject>Resource scheduling</subject><subject>Schedules</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj11LwzAYhYMoWKcX_gBh4J3Q7X2TJmkuZfgFA2828C68aRPtmG1NWmH_3sp2dW4ezjkPY7cICwQllnIBnGsj5BnLUErMtUJ1zjIAU-S8EB-X7CqlHQA3WpcZu9u2za-PqRkO81R9-Xrc-_mnb32koYvX7CLQPvmbU87Y5vlps3rN1-8vb6vHdd4rIXNfBmUQpYfa1UAgXc0rHWrlCh2CKp3kygQqgtNoPKGopockHaFRpJHEjN0fa_vY_Yw-DXbXjbGdFq2YerGcJMxEPRypVDUDDU3X2j423xQPFsH-21tpT_biD6zQSvs</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>Chougule, Samiksha</creator><creator>Ghuge, Krishna</creator><creator>Kote, Abhishek</creator><creator>Ramteke, Ashwin</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241010</creationdate><title>University schedule generator</title><author>Chougule, Samiksha ; Ghuge, Krishna ; Kote, Abhishek ; Ramteke, Ashwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-e8f69115e0dbd0a05bd2c7fd6b47ff68b5269fa4fb719ea13c279a5ba196a71a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Colleges & universities</topic><topic>Machine learning</topic><topic>Resource scheduling</topic><topic>Schedules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chougule, Samiksha</creatorcontrib><creatorcontrib>Ghuge, Krishna</creatorcontrib><creatorcontrib>Kote, Abhishek</creatorcontrib><creatorcontrib>Ramteke, Ashwin</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chougule, Samiksha</au><au>Ghuge, Krishna</au><au>Kote, Abhishek</au><au>Ramteke, Ashwin</au><au>Saxena, Ankur</au><au>Phade, Gayatri M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>University schedule generator</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-10-10</date><risdate>2024</risdate><volume>3156</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the realm of educational institutions, challenging scheduling issues is course timetabling. The quest for an optimal schedule revolves around harmoniously meshing resources such as educators, subjects, students, and classrooms while avoiding conflicts and adhering to a multitude of essential and preferential constraints. This paper explores the application of various artificial intelligence (AI) and Machine Learning (ML) algorithms as a promising approach to tackle the intricate university timetabling problem. We endeavor to provide essential context and motivation for harnessing ML techniques in the development of a schedule generator. We conduct a comprehensive review of significant works, shedding light on the evolving landscape of academic timetabling solutions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0227935</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2024, Vol.3156 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3115187619 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Algorithms Artificial intelligence Colleges & universities Machine learning Resource scheduling Schedules |
title | University schedule generator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=University%20schedule%20generator&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Chougule,%20Samiksha&rft.date=2024-10-10&rft.volume=3156&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0227935&rft_dat=%3Cproquest_scita%3E3115187619%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p635-e8f69115e0dbd0a05bd2c7fd6b47ff68b5269fa4fb719ea13c279a5ba196a71a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115187619&rft_id=info:pmid/&rfr_iscdi=true |