Loading…

University schedule generator

In the realm of educational institutions, challenging scheduling issues is course timetabling. The quest for an optimal schedule revolves around harmoniously meshing resources such as educators, subjects, students, and classrooms while avoiding conflicts and adhering to a multitude of essential and...

Full description

Saved in:
Bibliographic Details
Main Authors: Chougule, Samiksha, Ghuge, Krishna, Kote, Abhishek, Ramteke, Ashwin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3156
creator Chougule, Samiksha
Ghuge, Krishna
Kote, Abhishek
Ramteke, Ashwin
description In the realm of educational institutions, challenging scheduling issues is course timetabling. The quest for an optimal schedule revolves around harmoniously meshing resources such as educators, subjects, students, and classrooms while avoiding conflicts and adhering to a multitude of essential and preferential constraints. This paper explores the application of various artificial intelligence (AI) and Machine Learning (ML) algorithms as a promising approach to tackle the intricate university timetabling problem. We endeavor to provide essential context and motivation for harnessing ML techniques in the development of a schedule generator. We conduct a comprehensive review of significant works, shedding light on the evolving landscape of academic timetabling solutions.
doi_str_mv 10.1063/5.0227935
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3115187619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115187619</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-e8f69115e0dbd0a05bd2c7fd6b47ff68b5269fa4fb719ea13c279a5ba196a71a3</originalsourceid><addsrcrecordid>eNotj11LwzAYhYMoWKcX_gBh4J3Q7X2TJmkuZfgFA2828C68aRPtmG1NWmH_3sp2dW4ezjkPY7cICwQllnIBnGsj5BnLUErMtUJ1zjIAU-S8EB-X7CqlHQA3WpcZu9u2za-PqRkO81R9-Xrc-_mnb32koYvX7CLQPvmbU87Y5vlps3rN1-8vb6vHdd4rIXNfBmUQpYfa1UAgXc0rHWrlCh2CKp3kygQqgtNoPKGopockHaFRpJHEjN0fa_vY_Yw-DXbXjbGdFq2YerGcJMxEPRypVDUDDU3X2j423xQPFsH-21tpT_biD6zQSvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3115187619</pqid></control><display><type>conference_proceeding</type><title>University schedule generator</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Chougule, Samiksha ; Ghuge, Krishna ; Kote, Abhishek ; Ramteke, Ashwin</creator><contributor>Saxena, Ankur ; Phade, Gayatri M</contributor><creatorcontrib>Chougule, Samiksha ; Ghuge, Krishna ; Kote, Abhishek ; Ramteke, Ashwin ; Saxena, Ankur ; Phade, Gayatri M</creatorcontrib><description>In the realm of educational institutions, challenging scheduling issues is course timetabling. The quest for an optimal schedule revolves around harmoniously meshing resources such as educators, subjects, students, and classrooms while avoiding conflicts and adhering to a multitude of essential and preferential constraints. This paper explores the application of various artificial intelligence (AI) and Machine Learning (ML) algorithms as a promising approach to tackle the intricate university timetabling problem. We endeavor to provide essential context and motivation for harnessing ML techniques in the development of a schedule generator. We conduct a comprehensive review of significant works, shedding light on the evolving landscape of academic timetabling solutions.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0227935</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial intelligence ; Colleges &amp; universities ; Machine learning ; Resource scheduling ; Schedules</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3156 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Saxena, Ankur</contributor><contributor>Phade, Gayatri M</contributor><creatorcontrib>Chougule, Samiksha</creatorcontrib><creatorcontrib>Ghuge, Krishna</creatorcontrib><creatorcontrib>Kote, Abhishek</creatorcontrib><creatorcontrib>Ramteke, Ashwin</creatorcontrib><title>University schedule generator</title><title>AIP Conference Proceedings</title><description>In the realm of educational institutions, challenging scheduling issues is course timetabling. The quest for an optimal schedule revolves around harmoniously meshing resources such as educators, subjects, students, and classrooms while avoiding conflicts and adhering to a multitude of essential and preferential constraints. This paper explores the application of various artificial intelligence (AI) and Machine Learning (ML) algorithms as a promising approach to tackle the intricate university timetabling problem. We endeavor to provide essential context and motivation for harnessing ML techniques in the development of a schedule generator. We conduct a comprehensive review of significant works, shedding light on the evolving landscape of academic timetabling solutions.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Colleges &amp; universities</subject><subject>Machine learning</subject><subject>Resource scheduling</subject><subject>Schedules</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj11LwzAYhYMoWKcX_gBh4J3Q7X2TJmkuZfgFA2828C68aRPtmG1NWmH_3sp2dW4ezjkPY7cICwQllnIBnGsj5BnLUErMtUJ1zjIAU-S8EB-X7CqlHQA3WpcZu9u2za-PqRkO81R9-Xrc-_mnb32koYvX7CLQPvmbU87Y5vlps3rN1-8vb6vHdd4rIXNfBmUQpYfa1UAgXc0rHWrlCh2CKp3kygQqgtNoPKGopockHaFRpJHEjN0fa_vY_Yw-DXbXjbGdFq2YerGcJMxEPRypVDUDDU3X2j423xQPFsH-21tpT_biD6zQSvs</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>Chougule, Samiksha</creator><creator>Ghuge, Krishna</creator><creator>Kote, Abhishek</creator><creator>Ramteke, Ashwin</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241010</creationdate><title>University schedule generator</title><author>Chougule, Samiksha ; Ghuge, Krishna ; Kote, Abhishek ; Ramteke, Ashwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-e8f69115e0dbd0a05bd2c7fd6b47ff68b5269fa4fb719ea13c279a5ba196a71a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Colleges &amp; universities</topic><topic>Machine learning</topic><topic>Resource scheduling</topic><topic>Schedules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chougule, Samiksha</creatorcontrib><creatorcontrib>Ghuge, Krishna</creatorcontrib><creatorcontrib>Kote, Abhishek</creatorcontrib><creatorcontrib>Ramteke, Ashwin</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chougule, Samiksha</au><au>Ghuge, Krishna</au><au>Kote, Abhishek</au><au>Ramteke, Ashwin</au><au>Saxena, Ankur</au><au>Phade, Gayatri M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>University schedule generator</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-10-10</date><risdate>2024</risdate><volume>3156</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the realm of educational institutions, challenging scheduling issues is course timetabling. The quest for an optimal schedule revolves around harmoniously meshing resources such as educators, subjects, students, and classrooms while avoiding conflicts and adhering to a multitude of essential and preferential constraints. This paper explores the application of various artificial intelligence (AI) and Machine Learning (ML) algorithms as a promising approach to tackle the intricate university timetabling problem. We endeavor to provide essential context and motivation for harnessing ML techniques in the development of a schedule generator. We conduct a comprehensive review of significant works, shedding light on the evolving landscape of academic timetabling solutions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0227935</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2024, Vol.3156 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3115187619
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Algorithms
Artificial intelligence
Colleges & universities
Machine learning
Resource scheduling
Schedules
title University schedule generator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=University%20schedule%20generator&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Chougule,%20Samiksha&rft.date=2024-10-10&rft.volume=3156&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0227935&rft_dat=%3Cproquest_scita%3E3115187619%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p635-e8f69115e0dbd0a05bd2c7fd6b47ff68b5269fa4fb719ea13c279a5ba196a71a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115187619&rft_id=info:pmid/&rfr_iscdi=true