Loading…
A new approach to solving the radiation field problem of an extended helical undulator
A new method is applied to construct an exact solution for the radiation field of a particle moving along an infinite helical trajectory. The solution is obtained in the form of a series expansion in cylindrical multipoles. The obtained solution is compared with the existing approximate solution and...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ivanyan, M I Grigoryan, B Grigoryan, A Aslyan, L Avagyan, V Babujyan, H Arutunian, S Floettmann, K Lemery, F |
description | A new method is applied to construct an exact solution for the radiation field of a particle moving along an infinite helical trajectory. The solution is obtained in the form of a series expansion in cylindrical multipoles. The obtained solution is compared with the existing approximate solution and, using the derived exact relationships for the Doppler effect, is used to construct integral and angular characteristics of the radiation field. The possibility of a continuous transition from expressions for a helical trajectory of a particle to expressions describing the motion of a particle along a closed circle is shown. Optimization criteria are introduced and the possibility of optimizing the radiation characteristics by several parameters is considered. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3115224514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115224514</sourcerecordid><originalsourceid>FETCH-proquest_journals_31152245143</originalsourceid><addsrcrecordid>eNqNjEEKwjAQAIMgWLR_WPBcaJJGvYooPkC8lrXZ2pSY1CZRn28PPsDTHGaYGcuElLzYVUIsWB5CX5al2GyFUjJj1z04egMOw-ix6SB6CN6-jLtD7AhG1Aaj8Q5aQ1bDVN0sPcC3gA7oE8lp0tCRNQ1aSE4ni9GPKzZv0QbKf1yy9el4OZyLafBMFGLd-zS6SdWScyVEpXgl_6u-7KVBBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115224514</pqid></control><display><type>article</type><title>A new approach to solving the radiation field problem of an extended helical undulator</title><source>Publicly Available Content Database</source><creator>Ivanyan, M I ; Grigoryan, B ; Grigoryan, A ; Aslyan, L ; Avagyan, V ; Babujyan, H ; Arutunian, S ; Floettmann, K ; Lemery, F</creator><creatorcontrib>Ivanyan, M I ; Grigoryan, B ; Grigoryan, A ; Aslyan, L ; Avagyan, V ; Babujyan, H ; Arutunian, S ; Floettmann, K ; Lemery, F</creatorcontrib><description>A new method is applied to construct an exact solution for the radiation field of a particle moving along an infinite helical trajectory. The solution is obtained in the form of a series expansion in cylindrical multipoles. The obtained solution is compared with the existing approximate solution and, using the derived exact relationships for the Doppler effect, is used to construct integral and angular characteristics of the radiation field. The possibility of a continuous transition from expressions for a helical trajectory of a particle to expressions describing the motion of a particle along a closed circle is shown. Optimization criteria are introduced and the possibility of optimizing the radiation characteristics by several parameters is considered.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Doppler effect ; Exact solutions ; Multipoles ; Series expansion ; Trajectory optimization</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3115224514?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Ivanyan, M I</creatorcontrib><creatorcontrib>Grigoryan, B</creatorcontrib><creatorcontrib>Grigoryan, A</creatorcontrib><creatorcontrib>Aslyan, L</creatorcontrib><creatorcontrib>Avagyan, V</creatorcontrib><creatorcontrib>Babujyan, H</creatorcontrib><creatorcontrib>Arutunian, S</creatorcontrib><creatorcontrib>Floettmann, K</creatorcontrib><creatorcontrib>Lemery, F</creatorcontrib><title>A new approach to solving the radiation field problem of an extended helical undulator</title><title>arXiv.org</title><description>A new method is applied to construct an exact solution for the radiation field of a particle moving along an infinite helical trajectory. The solution is obtained in the form of a series expansion in cylindrical multipoles. The obtained solution is compared with the existing approximate solution and, using the derived exact relationships for the Doppler effect, is used to construct integral and angular characteristics of the radiation field. The possibility of a continuous transition from expressions for a helical trajectory of a particle to expressions describing the motion of a particle along a closed circle is shown. Optimization criteria are introduced and the possibility of optimizing the radiation characteristics by several parameters is considered.</description><subject>Doppler effect</subject><subject>Exact solutions</subject><subject>Multipoles</subject><subject>Series expansion</subject><subject>Trajectory optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEEKwjAQAIMgWLR_WPBcaJJGvYooPkC8lrXZ2pSY1CZRn28PPsDTHGaYGcuElLzYVUIsWB5CX5al2GyFUjJj1z04egMOw-ix6SB6CN6-jLtD7AhG1Aaj8Q5aQ1bDVN0sPcC3gA7oE8lp0tCRNQ1aSE4ni9GPKzZv0QbKf1yy9el4OZyLafBMFGLd-zS6SdWScyVEpXgl_6u-7KVBBw</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>Ivanyan, M I</creator><creator>Grigoryan, B</creator><creator>Grigoryan, A</creator><creator>Aslyan, L</creator><creator>Avagyan, V</creator><creator>Babujyan, H</creator><creator>Arutunian, S</creator><creator>Floettmann, K</creator><creator>Lemery, F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241008</creationdate><title>A new approach to solving the radiation field problem of an extended helical undulator</title><author>Ivanyan, M I ; Grigoryan, B ; Grigoryan, A ; Aslyan, L ; Avagyan, V ; Babujyan, H ; Arutunian, S ; Floettmann, K ; Lemery, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31152245143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Doppler effect</topic><topic>Exact solutions</topic><topic>Multipoles</topic><topic>Series expansion</topic><topic>Trajectory optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Ivanyan, M I</creatorcontrib><creatorcontrib>Grigoryan, B</creatorcontrib><creatorcontrib>Grigoryan, A</creatorcontrib><creatorcontrib>Aslyan, L</creatorcontrib><creatorcontrib>Avagyan, V</creatorcontrib><creatorcontrib>Babujyan, H</creatorcontrib><creatorcontrib>Arutunian, S</creatorcontrib><creatorcontrib>Floettmann, K</creatorcontrib><creatorcontrib>Lemery, F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanyan, M I</au><au>Grigoryan, B</au><au>Grigoryan, A</au><au>Aslyan, L</au><au>Avagyan, V</au><au>Babujyan, H</au><au>Arutunian, S</au><au>Floettmann, K</au><au>Lemery, F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A new approach to solving the radiation field problem of an extended helical undulator</atitle><jtitle>arXiv.org</jtitle><date>2024-10-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A new method is applied to construct an exact solution for the radiation field of a particle moving along an infinite helical trajectory. The solution is obtained in the form of a series expansion in cylindrical multipoles. The obtained solution is compared with the existing approximate solution and, using the derived exact relationships for the Doppler effect, is used to construct integral and angular characteristics of the radiation field. The possibility of a continuous transition from expressions for a helical trajectory of a particle to expressions describing the motion of a particle along a closed circle is shown. Optimization criteria are introduced and the possibility of optimizing the radiation characteristics by several parameters is considered.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3115224514 |
source | Publicly Available Content Database |
subjects | Doppler effect Exact solutions Multipoles Series expansion Trajectory optimization |
title | A new approach to solving the radiation field problem of an extended helical undulator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20new%20approach%20to%20solving%20the%20radiation%20field%20problem%20of%20an%20extended%20helical%20undulator&rft.jtitle=arXiv.org&rft.au=Ivanyan,%20M%20I&rft.date=2024-10-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3115224514%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31152245143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115224514&rft_id=info:pmid/&rfr_iscdi=true |