Loading…
Model Uncertainty and Missing Data: An Objective Bayesian Perspective
The interplay between missing data and model uncertainty -- two classic statistical problems -- leads to primary questions that we formally address from an objective Bayesian perspective. For the general regression problem, we discuss the probabilistic justification of Rubin's rules applied to...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | García-Donato, Gonzalo Castellanos, María Eugenia Cabras, Stefano Quirós, Alicia te, Anabel |
description | The interplay between missing data and model uncertainty -- two classic statistical problems -- leads to primary questions that we formally address from an objective Bayesian perspective. For the general regression problem, we discuss the probabilistic justification of Rubin's rules applied to the usual components of Bayesian variable selection, arguing that prior predictive marginals should be central to the pursued methodology. In the regression settings, we explore the conditions of prior distributions that make the missing data mechanism ignorable. Moreover, when comparing multiple linear models, we provide a complete methodology for dealing with special cases, such as variable selection or uncertainty regarding model errors. In numerous simulation experiments, we demonstrate that our method outperforms or equals others, in consistently producing results close to those obtained using the full dataset. In general, the difference increases with the percentage of missing data and the correlation between the variables used for imputation. Finally, we summarize possible directions for future research. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3115228987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115228987</sourcerecordid><originalsourceid>FETCH-proquest_journals_31152289873</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_uNBa0JlMa9fDaCO1qLXc9BYjMtrcMfDvC-oDWh0454yEJ5WKgnQh5UT4zHUYhnKZyDhWnsjytqIGrqYk61AbNwCaCnLNrM0D9uhwDRsDp1tNpdMvgi0OxBoNnMly95UzMb5jw-T_OBXzQ3bZHYPOts-e2BV121vzSYWKoljKdJUm6r_rDTOTOm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115228987</pqid></control><display><type>article</type><title>Model Uncertainty and Missing Data: An Objective Bayesian Perspective</title><source>Publicly Available Content (ProQuest)</source><creator>García-Donato, Gonzalo ; Castellanos, María Eugenia ; Cabras, Stefano ; Quirós, Alicia ; te, Anabel</creator><creatorcontrib>García-Donato, Gonzalo ; Castellanos, María Eugenia ; Cabras, Stefano ; Quirós, Alicia ; te, Anabel</creatorcontrib><description>The interplay between missing data and model uncertainty -- two classic statistical problems -- leads to primary questions that we formally address from an objective Bayesian perspective. For the general regression problem, we discuss the probabilistic justification of Rubin's rules applied to the usual components of Bayesian variable selection, arguing that prior predictive marginals should be central to the pursued methodology. In the regression settings, we explore the conditions of prior distributions that make the missing data mechanism ignorable. Moreover, when comparing multiple linear models, we provide a complete methodology for dealing with special cases, such as variable selection or uncertainty regarding model errors. In numerous simulation experiments, we demonstrate that our method outperforms or equals others, in consistently producing results close to those obtained using the full dataset. In general, the difference increases with the percentage of missing data and the correlation between the variables used for imputation. Finally, we summarize possible directions for future research.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Feature selection ; Missing data ; Regression models ; Statistical analysis ; Uncertainty</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3115228987?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>García-Donato, Gonzalo</creatorcontrib><creatorcontrib>Castellanos, María Eugenia</creatorcontrib><creatorcontrib>Cabras, Stefano</creatorcontrib><creatorcontrib>Quirós, Alicia</creatorcontrib><creatorcontrib>te, Anabel</creatorcontrib><title>Model Uncertainty and Missing Data: An Objective Bayesian Perspective</title><title>arXiv.org</title><description>The interplay between missing data and model uncertainty -- two classic statistical problems -- leads to primary questions that we formally address from an objective Bayesian perspective. For the general regression problem, we discuss the probabilistic justification of Rubin's rules applied to the usual components of Bayesian variable selection, arguing that prior predictive marginals should be central to the pursued methodology. In the regression settings, we explore the conditions of prior distributions that make the missing data mechanism ignorable. Moreover, when comparing multiple linear models, we provide a complete methodology for dealing with special cases, such as variable selection or uncertainty regarding model errors. In numerous simulation experiments, we demonstrate that our method outperforms or equals others, in consistently producing results close to those obtained using the full dataset. In general, the difference increases with the percentage of missing data and the correlation between the variables used for imputation. Finally, we summarize possible directions for future research.</description><subject>Bayesian analysis</subject><subject>Feature selection</subject><subject>Missing data</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNissKgkAUQIcgSMp_uNBa0JlMa9fDaCO1qLXc9BYjMtrcMfDvC-oDWh0454yEJ5WKgnQh5UT4zHUYhnKZyDhWnsjytqIGrqYk61AbNwCaCnLNrM0D9uhwDRsDp1tNpdMvgi0OxBoNnMly95UzMb5jw-T_OBXzQ3bZHYPOts-e2BV121vzSYWKoljKdJUm6r_rDTOTOm4</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>García-Donato, Gonzalo</creator><creator>Castellanos, María Eugenia</creator><creator>Cabras, Stefano</creator><creator>Quirós, Alicia</creator><creator>te, Anabel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241008</creationdate><title>Model Uncertainty and Missing Data: An Objective Bayesian Perspective</title><author>García-Donato, Gonzalo ; Castellanos, María Eugenia ; Cabras, Stefano ; Quirós, Alicia ; te, Anabel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31152289873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian analysis</topic><topic>Feature selection</topic><topic>Missing data</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>García-Donato, Gonzalo</creatorcontrib><creatorcontrib>Castellanos, María Eugenia</creatorcontrib><creatorcontrib>Cabras, Stefano</creatorcontrib><creatorcontrib>Quirós, Alicia</creatorcontrib><creatorcontrib>te, Anabel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Donato, Gonzalo</au><au>Castellanos, María Eugenia</au><au>Cabras, Stefano</au><au>Quirós, Alicia</au><au>te, Anabel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Model Uncertainty and Missing Data: An Objective Bayesian Perspective</atitle><jtitle>arXiv.org</jtitle><date>2024-10-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The interplay between missing data and model uncertainty -- two classic statistical problems -- leads to primary questions that we formally address from an objective Bayesian perspective. For the general regression problem, we discuss the probabilistic justification of Rubin's rules applied to the usual components of Bayesian variable selection, arguing that prior predictive marginals should be central to the pursued methodology. In the regression settings, we explore the conditions of prior distributions that make the missing data mechanism ignorable. Moreover, when comparing multiple linear models, we provide a complete methodology for dealing with special cases, such as variable selection or uncertainty regarding model errors. In numerous simulation experiments, we demonstrate that our method outperforms or equals others, in consistently producing results close to those obtained using the full dataset. In general, the difference increases with the percentage of missing data and the correlation between the variables used for imputation. Finally, we summarize possible directions for future research.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3115228987 |
source | Publicly Available Content (ProQuest) |
subjects | Bayesian analysis Feature selection Missing data Regression models Statistical analysis Uncertainty |
title | Model Uncertainty and Missing Data: An Objective Bayesian Perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Model%20Uncertainty%20and%20Missing%20Data:%20An%20Objective%20Bayesian%20Perspective&rft.jtitle=arXiv.org&rft.au=Garc%C3%ADa-Donato,%20Gonzalo&rft.date=2024-10-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3115228987%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31152289873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115228987&rft_id=info:pmid/&rfr_iscdi=true |