Loading…

Exploring single-entity electrochemistry beyond conventional potential windows: mechanistic insights into hydrazine/hydrazinium ion oxidation

Single-entity electrochemistry (SEE) enables research into the electrochemical properties of nanoparticles (NPs) at the individual NP level. Recent studies on active particle-active electrode systems have expanded the scope of SEE measurements, moving beyond the limitations of inert electrode-based...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2024-10, Vol.16 (39), p.18488-18493
Main Authors: Kim, Ki Jun, Han, Yujin, Kwon, Seong Jung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c226t-390e12a8d07021d177da92fba4784e14ee48c040915732595958ee40c29c02403
container_end_page 18493
container_issue 39
container_start_page 18488
container_title Nanoscale
container_volume 16
creator Kim, Ki Jun
Han, Yujin
Kwon, Seong Jung
description Single-entity electrochemistry (SEE) enables research into the electrochemical properties of nanoparticles (NPs) at the individual NP level. Recent studies on active particle-active electrode systems have expanded the scope of SEE measurements, moving beyond the limitations of inert electrode-based methods that rely on distinct NP-electrode catalytic differences, thereby enhancing mechanistic understanding of catalytic reactions. In this study, we investigated SEE signals from Pt NPs colliding with Au ultramicroelectrodes (UME) at elevated potentials where both Pt and Au UME exhibit electrocatalytic activity. Under conditions where Au UME is activated for hydrazine oxidation, distinctive combined spike and staircase current responses were observed. SEE signals exhibited varied shapes depending on pH and hydrazine concentration. Analyzing these variations provided insights into changes in reaction mechanisms according to pH and hydrazine concentration. Single-entity electrochemistry (SEE) enables research into the electrochemical properties of nanoparticles (NPs) at the individual NP level.
doi_str_mv 10.1039/d4nr02942a
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_3115263673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103451297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-390e12a8d07021d177da92fba4784e14ee48c040915732595958ee40c29c02403</originalsourceid><addsrcrecordid>eNpdkV1LHDEYhUNR6qq96X1LoDcijOZrZzbeyWpbQRTEXg_Z5F03y0yyJpmu43_ofzbj6hYkkByS5z1wchD6SskJJVyeGuECYVIw9QmNGBGk4LxiO1tdij20H-OSkFLykn9Ge1yyUnBGR-jf5dOq8cG6Bxzz1kABLtnUY2hAp-D1AlobU-jxDHrvDNbe_R0Q71SDVz4NOqu1dcav4xluQS-UyyNWY-uifVikmEXyeNGboJ6tg9N3ZbsWZyPsn6xRg-Uh2p2rJsKXt_MA_fl5eT_9XVzf_rqanl8XmrEyFVwSoExNDKkIo4ZWlVGSzWdKVBMBVACIic7ZJR1XnI1lXpN8RzSTmjBB-AE62viugn_sIKY6h9TQNMqB72LN87-KMWWyyuiPD-jSdyGHHyg6ZiUvK56p4w2lg48xwLxeBduq0NeU1ENJ9YW4uXst6TzD398su1kLZou-t5KBbxsgRL19_d8yfwG1kplS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115263673</pqid></control><display><type>article</type><title>Exploring single-entity electrochemistry beyond conventional potential windows: mechanistic insights into hydrazine/hydrazinium ion oxidation</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Kim, Ki Jun ; Han, Yujin ; Kwon, Seong Jung</creator><creatorcontrib>Kim, Ki Jun ; Han, Yujin ; Kwon, Seong Jung</creatorcontrib><description>Single-entity electrochemistry (SEE) enables research into the electrochemical properties of nanoparticles (NPs) at the individual NP level. Recent studies on active particle-active electrode systems have expanded the scope of SEE measurements, moving beyond the limitations of inert electrode-based methods that rely on distinct NP-electrode catalytic differences, thereby enhancing mechanistic understanding of catalytic reactions. In this study, we investigated SEE signals from Pt NPs colliding with Au ultramicroelectrodes (UME) at elevated potentials where both Pt and Au UME exhibit electrocatalytic activity. Under conditions where Au UME is activated for hydrazine oxidation, distinctive combined spike and staircase current responses were observed. SEE signals exhibited varied shapes depending on pH and hydrazine concentration. Analyzing these variations provided insights into changes in reaction mechanisms according to pH and hydrazine concentration. Single-entity electrochemistry (SEE) enables research into the electrochemical properties of nanoparticles (NPs) at the individual NP level.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr02942a</identifier><identifier>PMID: 39264321</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Electrochemical analysis ; Electrochemistry ; Electrodes ; Gold ; Hydrazines ; Nanoparticles ; Oxidation ; Platinum ; Reaction mechanisms</subject><ispartof>Nanoscale, 2024-10, Vol.16 (39), p.18488-18493</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-390e12a8d07021d177da92fba4784e14ee48c040915732595958ee40c29c02403</cites><orcidid>0000-0003-1358-1222 ; 0000-0002-9508-1557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39264321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ki Jun</creatorcontrib><creatorcontrib>Han, Yujin</creatorcontrib><creatorcontrib>Kwon, Seong Jung</creatorcontrib><title>Exploring single-entity electrochemistry beyond conventional potential windows: mechanistic insights into hydrazine/hydrazinium ion oxidation</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Single-entity electrochemistry (SEE) enables research into the electrochemical properties of nanoparticles (NPs) at the individual NP level. Recent studies on active particle-active electrode systems have expanded the scope of SEE measurements, moving beyond the limitations of inert electrode-based methods that rely on distinct NP-electrode catalytic differences, thereby enhancing mechanistic understanding of catalytic reactions. In this study, we investigated SEE signals from Pt NPs colliding with Au ultramicroelectrodes (UME) at elevated potentials where both Pt and Au UME exhibit electrocatalytic activity. Under conditions where Au UME is activated for hydrazine oxidation, distinctive combined spike and staircase current responses were observed. SEE signals exhibited varied shapes depending on pH and hydrazine concentration. Analyzing these variations provided insights into changes in reaction mechanisms according to pH and hydrazine concentration. Single-entity electrochemistry (SEE) enables research into the electrochemical properties of nanoparticles (NPs) at the individual NP level.</description><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Gold</subject><subject>Hydrazines</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Platinum</subject><subject>Reaction mechanisms</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkV1LHDEYhUNR6qq96X1LoDcijOZrZzbeyWpbQRTEXg_Z5F03y0yyJpmu43_ofzbj6hYkkByS5z1wchD6SskJJVyeGuECYVIw9QmNGBGk4LxiO1tdij20H-OSkFLykn9Ge1yyUnBGR-jf5dOq8cG6Bxzz1kABLtnUY2hAp-D1AlobU-jxDHrvDNbe_R0Q71SDVz4NOqu1dcav4xluQS-UyyNWY-uifVikmEXyeNGboJ6tg9N3ZbsWZyPsn6xRg-Uh2p2rJsKXt_MA_fl5eT_9XVzf_rqanl8XmrEyFVwSoExNDKkIo4ZWlVGSzWdKVBMBVACIic7ZJR1XnI1lXpN8RzSTmjBB-AE62viugn_sIKY6h9TQNMqB72LN87-KMWWyyuiPD-jSdyGHHyg6ZiUvK56p4w2lg48xwLxeBduq0NeU1ENJ9YW4uXst6TzD398su1kLZou-t5KBbxsgRL19_d8yfwG1kplS</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>Kim, Ki Jun</creator><creator>Han, Yujin</creator><creator>Kwon, Seong Jung</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1358-1222</orcidid><orcidid>https://orcid.org/0000-0002-9508-1557</orcidid></search><sort><creationdate>20241010</creationdate><title>Exploring single-entity electrochemistry beyond conventional potential windows: mechanistic insights into hydrazine/hydrazinium ion oxidation</title><author>Kim, Ki Jun ; Han, Yujin ; Kwon, Seong Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-390e12a8d07021d177da92fba4784e14ee48c040915732595958ee40c29c02403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Gold</topic><topic>Hydrazines</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Platinum</topic><topic>Reaction mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ki Jun</creatorcontrib><creatorcontrib>Han, Yujin</creatorcontrib><creatorcontrib>Kwon, Seong Jung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ki Jun</au><au>Han, Yujin</au><au>Kwon, Seong Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring single-entity electrochemistry beyond conventional potential windows: mechanistic insights into hydrazine/hydrazinium ion oxidation</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2024-10-10</date><risdate>2024</risdate><volume>16</volume><issue>39</issue><spage>18488</spage><epage>18493</epage><pages>18488-18493</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>Single-entity electrochemistry (SEE) enables research into the electrochemical properties of nanoparticles (NPs) at the individual NP level. Recent studies on active particle-active electrode systems have expanded the scope of SEE measurements, moving beyond the limitations of inert electrode-based methods that rely on distinct NP-electrode catalytic differences, thereby enhancing mechanistic understanding of catalytic reactions. In this study, we investigated SEE signals from Pt NPs colliding with Au ultramicroelectrodes (UME) at elevated potentials where both Pt and Au UME exhibit electrocatalytic activity. Under conditions where Au UME is activated for hydrazine oxidation, distinctive combined spike and staircase current responses were observed. SEE signals exhibited varied shapes depending on pH and hydrazine concentration. Analyzing these variations provided insights into changes in reaction mechanisms according to pH and hydrazine concentration. Single-entity electrochemistry (SEE) enables research into the electrochemical properties of nanoparticles (NPs) at the individual NP level.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39264321</pmid><doi>10.1039/d4nr02942a</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1358-1222</orcidid><orcidid>https://orcid.org/0000-0002-9508-1557</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2024-10, Vol.16 (39), p.18488-18493
issn 2040-3364
2040-3372
2040-3372
language eng
recordid cdi_proquest_journals_3115263673
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Electrochemical analysis
Electrochemistry
Electrodes
Gold
Hydrazines
Nanoparticles
Oxidation
Platinum
Reaction mechanisms
title Exploring single-entity electrochemistry beyond conventional potential windows: mechanistic insights into hydrazine/hydrazinium ion oxidation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20single-entity%20electrochemistry%20beyond%20conventional%20potential%20windows:%20mechanistic%20insights%20into%20hydrazine/hydrazinium%20ion%20oxidation&rft.jtitle=Nanoscale&rft.au=Kim,%20Ki%20Jun&rft.date=2024-10-10&rft.volume=16&rft.issue=39&rft.spage=18488&rft.epage=18493&rft.pages=18488-18493&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr02942a&rft_dat=%3Cproquest_pubme%3E3103451297%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c226t-390e12a8d07021d177da92fba4784e14ee48c040915732595958ee40c29c02403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115263673&rft_id=info:pmid/39264321&rfr_iscdi=true