Loading…

Optimal Harvesting on a Modified Leslie–Gower Predator–Prey Model Under Fear and Allee Effects on Prey

In this article, we have analyzed the effect of prey apprehension on a modified Leslie–Gower predator–prey fishery model with Allee effect on the prey population. We investigate the predator–prey dynamics for linear, Holling type II, and Holling type III functional responses of the predator and obse...

Full description

Saved in:
Bibliographic Details
Published in:Differential equations and dynamical systems 2024-10, Vol.32 (4), p.1067-1096
Main Authors: Halder, Susmita, Bhattacharyya, Joydeb, Pal, Samares
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-7b4ee929ebffec396adc3111fda505038d78d42733e4857210302bcd77bd01df3
cites cdi_FETCH-LOGICAL-c249t-7b4ee929ebffec396adc3111fda505038d78d42733e4857210302bcd77bd01df3
container_end_page 1096
container_issue 4
container_start_page 1067
container_title Differential equations and dynamical systems
container_volume 32
creator Halder, Susmita
Bhattacharyya, Joydeb
Pal, Samares
description In this article, we have analyzed the effect of prey apprehension on a modified Leslie–Gower predator–prey fishery model with Allee effect on the prey population. We investigate the predator–prey dynamics for linear, Holling type II, and Holling type III functional responses of the predator and observed that the systems undergo a sudden change in dynamics from the coexistence steady state to the prey-free steady-state when the level of prey apprehension and the amount of harvesting effort surpass some threshold value. At a low intrinsic growth rate of the predator, the system with type II functional response exhibits a transcritical bifurcation when the harvesting effort crosses the threshold value. We study the dynamic optimization of the harvesting policy by employing Pontryagin’s maximum principle under the three different functional responses of the predator and obtain the harvesting yields corresponding to the dynamic reference point OSY. We also examine the existence of the bionomic equilibrium corresponding to the open access (OA) scenario and compare the combined harvesting yield with the yields obtained from the static reference point MSY and the dynamic reference point OSY. We observe that OSY provides the maximum economic benefit to the fishery compared to MSY and OA.
doi_str_mv 10.1007/s12591-022-00612-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115480038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115480038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-7b4ee929ebffec396adc3111fda505038d78d42733e4857210302bcd77bd01df3</originalsourceid><addsrcrecordid>eNp9kEtOwzAURS0EEqWwAUaWGBv8S50Mq6ofpKIyoGPLiV-qVCEudgpqR-yBHbISnAaJGSM_2eeeJ1-Ebhm9Z5Sqh8B4kjFCOSeUjhgnxzM0oJmSZJQqen6aGREJk5foKoRthFQm1QBtV7u2ejU1Xhj_DqGtmg12DTb4ydmqrMDiJYS6gu_Pr7n7AI-fPVjTOh8v4njoOKjxurHxbQbGY9NYPK5rADwtSyja0Pk69BpdlKYOcPN7DtF6Nn2ZLMhyNX-cjJek4DJricolQMYzyLu4yEbGFoIxVlqT0ISK1KrUSq6EAJkmijMqKM8Lq1RuKbOlGKK73rvz7m0f_6S3bu-buFJHTyJTGiWR4j1VeBeCh1LvfCzCHzSjuutU953q2Kk-daqPMST6UIhwswH_p_4n9QOf7Hvx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115480038</pqid></control><display><type>article</type><title>Optimal Harvesting on a Modified Leslie–Gower Predator–Prey Model Under Fear and Allee Effects on Prey</title><source>Springer Nature</source><creator>Halder, Susmita ; Bhattacharyya, Joydeb ; Pal, Samares</creator><creatorcontrib>Halder, Susmita ; Bhattacharyya, Joydeb ; Pal, Samares</creatorcontrib><description>In this article, we have analyzed the effect of prey apprehension on a modified Leslie–Gower predator–prey fishery model with Allee effect on the prey population. We investigate the predator–prey dynamics for linear, Holling type II, and Holling type III functional responses of the predator and observed that the systems undergo a sudden change in dynamics from the coexistence steady state to the prey-free steady-state when the level of prey apprehension and the amount of harvesting effort surpass some threshold value. At a low intrinsic growth rate of the predator, the system with type II functional response exhibits a transcritical bifurcation when the harvesting effort crosses the threshold value. We study the dynamic optimization of the harvesting policy by employing Pontryagin’s maximum principle under the three different functional responses of the predator and obtain the harvesting yields corresponding to the dynamic reference point OSY. We also examine the existence of the bionomic equilibrium corresponding to the open access (OA) scenario and compare the combined harvesting yield with the yields obtained from the static reference point MSY and the dynamic reference point OSY. We observe that OSY provides the maximum economic benefit to the fishery compared to MSY and OA.</description><identifier>ISSN: 0971-3514</identifier><identifier>EISSN: 0974-6870</identifier><identifier>DOI: 10.1007/s12591-022-00612-z</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Bifurcations ; Computer Science ; Engineering ; Fisheries ; Mathematics ; Mathematics and Statistics ; Original Research ; Pontryagin principle ; Predator-prey simulation ; Predators ; Steady state</subject><ispartof>Differential equations and dynamical systems, 2024-10, Vol.32 (4), p.1067-1096</ispartof><rights>Foundation for Scientific Research and Technological Innovation 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-7b4ee929ebffec396adc3111fda505038d78d42733e4857210302bcd77bd01df3</citedby><cites>FETCH-LOGICAL-c249t-7b4ee929ebffec396adc3111fda505038d78d42733e4857210302bcd77bd01df3</cites><orcidid>0000-0003-4600-2776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Halder, Susmita</creatorcontrib><creatorcontrib>Bhattacharyya, Joydeb</creatorcontrib><creatorcontrib>Pal, Samares</creatorcontrib><title>Optimal Harvesting on a Modified Leslie–Gower Predator–Prey Model Under Fear and Allee Effects on Prey</title><title>Differential equations and dynamical systems</title><addtitle>Differ Equ Dyn Syst</addtitle><description>In this article, we have analyzed the effect of prey apprehension on a modified Leslie–Gower predator–prey fishery model with Allee effect on the prey population. We investigate the predator–prey dynamics for linear, Holling type II, and Holling type III functional responses of the predator and observed that the systems undergo a sudden change in dynamics from the coexistence steady state to the prey-free steady-state when the level of prey apprehension and the amount of harvesting effort surpass some threshold value. At a low intrinsic growth rate of the predator, the system with type II functional response exhibits a transcritical bifurcation when the harvesting effort crosses the threshold value. We study the dynamic optimization of the harvesting policy by employing Pontryagin’s maximum principle under the three different functional responses of the predator and obtain the harvesting yields corresponding to the dynamic reference point OSY. We also examine the existence of the bionomic equilibrium corresponding to the open access (OA) scenario and compare the combined harvesting yield with the yields obtained from the static reference point MSY and the dynamic reference point OSY. We observe that OSY provides the maximum economic benefit to the fishery compared to MSY and OA.</description><subject>Bifurcations</subject><subject>Computer Science</subject><subject>Engineering</subject><subject>Fisheries</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Research</subject><subject>Pontryagin principle</subject><subject>Predator-prey simulation</subject><subject>Predators</subject><subject>Steady state</subject><issn>0971-3514</issn><issn>0974-6870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAURS0EEqWwAUaWGBv8S50Mq6ofpKIyoGPLiV-qVCEudgpqR-yBHbISnAaJGSM_2eeeJ1-Ebhm9Z5Sqh8B4kjFCOSeUjhgnxzM0oJmSZJQqen6aGREJk5foKoRthFQm1QBtV7u2ejU1Xhj_DqGtmg12DTb4ydmqrMDiJYS6gu_Pr7n7AI-fPVjTOh8v4njoOKjxurHxbQbGY9NYPK5rADwtSyja0Pk69BpdlKYOcPN7DtF6Nn2ZLMhyNX-cjJek4DJricolQMYzyLu4yEbGFoIxVlqT0ISK1KrUSq6EAJkmijMqKM8Lq1RuKbOlGKK73rvz7m0f_6S3bu-buFJHTyJTGiWR4j1VeBeCh1LvfCzCHzSjuutU953q2Kk-daqPMST6UIhwswH_p_4n9QOf7Hvx</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Halder, Susmita</creator><creator>Bhattacharyya, Joydeb</creator><creator>Pal, Samares</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4600-2776</orcidid></search><sort><creationdate>20241001</creationdate><title>Optimal Harvesting on a Modified Leslie–Gower Predator–Prey Model Under Fear and Allee Effects on Prey</title><author>Halder, Susmita ; Bhattacharyya, Joydeb ; Pal, Samares</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-7b4ee929ebffec396adc3111fda505038d78d42733e4857210302bcd77bd01df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bifurcations</topic><topic>Computer Science</topic><topic>Engineering</topic><topic>Fisheries</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Research</topic><topic>Pontryagin principle</topic><topic>Predator-prey simulation</topic><topic>Predators</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halder, Susmita</creatorcontrib><creatorcontrib>Bhattacharyya, Joydeb</creatorcontrib><creatorcontrib>Pal, Samares</creatorcontrib><collection>CrossRef</collection><jtitle>Differential equations and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halder, Susmita</au><au>Bhattacharyya, Joydeb</au><au>Pal, Samares</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Harvesting on a Modified Leslie–Gower Predator–Prey Model Under Fear and Allee Effects on Prey</atitle><jtitle>Differential equations and dynamical systems</jtitle><stitle>Differ Equ Dyn Syst</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>32</volume><issue>4</issue><spage>1067</spage><epage>1096</epage><pages>1067-1096</pages><issn>0971-3514</issn><eissn>0974-6870</eissn><abstract>In this article, we have analyzed the effect of prey apprehension on a modified Leslie–Gower predator–prey fishery model with Allee effect on the prey population. We investigate the predator–prey dynamics for linear, Holling type II, and Holling type III functional responses of the predator and observed that the systems undergo a sudden change in dynamics from the coexistence steady state to the prey-free steady-state when the level of prey apprehension and the amount of harvesting effort surpass some threshold value. At a low intrinsic growth rate of the predator, the system with type II functional response exhibits a transcritical bifurcation when the harvesting effort crosses the threshold value. We study the dynamic optimization of the harvesting policy by employing Pontryagin’s maximum principle under the three different functional responses of the predator and obtain the harvesting yields corresponding to the dynamic reference point OSY. We also examine the existence of the bionomic equilibrium corresponding to the open access (OA) scenario and compare the combined harvesting yield with the yields obtained from the static reference point MSY and the dynamic reference point OSY. We observe that OSY provides the maximum economic benefit to the fishery compared to MSY and OA.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12591-022-00612-z</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-4600-2776</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0971-3514
ispartof Differential equations and dynamical systems, 2024-10, Vol.32 (4), p.1067-1096
issn 0971-3514
0974-6870
language eng
recordid cdi_proquest_journals_3115480038
source Springer Nature
subjects Bifurcations
Computer Science
Engineering
Fisheries
Mathematics
Mathematics and Statistics
Original Research
Pontryagin principle
Predator-prey simulation
Predators
Steady state
title Optimal Harvesting on a Modified Leslie–Gower Predator–Prey Model Under Fear and Allee Effects on Prey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A30%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Harvesting%20on%20a%20Modified%20Leslie%E2%80%93Gower%20Predator%E2%80%93Prey%20Model%20Under%20Fear%20and%20Allee%20Effects%20on%20Prey&rft.jtitle=Differential%20equations%20and%20dynamical%20systems&rft.au=Halder,%20Susmita&rft.date=2024-10-01&rft.volume=32&rft.issue=4&rft.spage=1067&rft.epage=1096&rft.pages=1067-1096&rft.issn=0971-3514&rft.eissn=0974-6870&rft_id=info:doi/10.1007/s12591-022-00612-z&rft_dat=%3Cproquest_cross%3E3115480038%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-7b4ee929ebffec396adc3111fda505038d78d42733e4857210302bcd77bd01df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115480038&rft_id=info:pmid/&rfr_iscdi=true