Loading…
Optimal Harvesting on a Modified Leslie–Gower Predator–Prey Model Under Fear and Allee Effects on Prey
In this article, we have analyzed the effect of prey apprehension on a modified Leslie–Gower predator–prey fishery model with Allee effect on the prey population. We investigate the predator–prey dynamics for linear, Holling type II, and Holling type III functional responses of the predator and obse...
Saved in:
Published in: | Differential equations and dynamical systems 2024-10, Vol.32 (4), p.1067-1096 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c249t-7b4ee929ebffec396adc3111fda505038d78d42733e4857210302bcd77bd01df3 |
---|---|
cites | cdi_FETCH-LOGICAL-c249t-7b4ee929ebffec396adc3111fda505038d78d42733e4857210302bcd77bd01df3 |
container_end_page | 1096 |
container_issue | 4 |
container_start_page | 1067 |
container_title | Differential equations and dynamical systems |
container_volume | 32 |
creator | Halder, Susmita Bhattacharyya, Joydeb Pal, Samares |
description | In this article, we have analyzed the effect of prey apprehension on a modified Leslie–Gower predator–prey fishery model with Allee effect on the prey population. We investigate the predator–prey dynamics for linear, Holling type II, and Holling type III functional responses of the predator and observed that the systems undergo a sudden change in dynamics from the coexistence steady state to the prey-free steady-state when the level of prey apprehension and the amount of harvesting effort surpass some threshold value. At a low intrinsic growth rate of the predator, the system with type II functional response exhibits a transcritical bifurcation when the harvesting effort crosses the threshold value. We study the dynamic optimization of the harvesting policy by employing Pontryagin’s maximum principle under the three different functional responses of the predator and obtain the harvesting yields corresponding to the dynamic reference point OSY. We also examine the existence of the bionomic equilibrium corresponding to the open access (OA) scenario and compare the combined harvesting yield with the yields obtained from the static reference point MSY and the dynamic reference point OSY. We observe that OSY provides the maximum economic benefit to the fishery compared to MSY and OA. |
doi_str_mv | 10.1007/s12591-022-00612-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115480038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115480038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-7b4ee929ebffec396adc3111fda505038d78d42733e4857210302bcd77bd01df3</originalsourceid><addsrcrecordid>eNp9kEtOwzAURS0EEqWwAUaWGBv8S50Mq6ofpKIyoGPLiV-qVCEudgpqR-yBHbISnAaJGSM_2eeeJ1-Ebhm9Z5Sqh8B4kjFCOSeUjhgnxzM0oJmSZJQqen6aGREJk5foKoRthFQm1QBtV7u2ejU1Xhj_DqGtmg12DTb4ydmqrMDiJYS6gu_Pr7n7AI-fPVjTOh8v4njoOKjxurHxbQbGY9NYPK5rADwtSyja0Pk69BpdlKYOcPN7DtF6Nn2ZLMhyNX-cjJek4DJricolQMYzyLu4yEbGFoIxVlqT0ISK1KrUSq6EAJkmijMqKM8Lq1RuKbOlGKK73rvz7m0f_6S3bu-buFJHTyJTGiWR4j1VeBeCh1LvfCzCHzSjuutU953q2Kk-daqPMST6UIhwswH_p_4n9QOf7Hvx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115480038</pqid></control><display><type>article</type><title>Optimal Harvesting on a Modified Leslie–Gower Predator–Prey Model Under Fear and Allee Effects on Prey</title><source>Springer Nature</source><creator>Halder, Susmita ; Bhattacharyya, Joydeb ; Pal, Samares</creator><creatorcontrib>Halder, Susmita ; Bhattacharyya, Joydeb ; Pal, Samares</creatorcontrib><description>In this article, we have analyzed the effect of prey apprehension on a modified Leslie–Gower predator–prey fishery model with Allee effect on the prey population. We investigate the predator–prey dynamics for linear, Holling type II, and Holling type III functional responses of the predator and observed that the systems undergo a sudden change in dynamics from the coexistence steady state to the prey-free steady-state when the level of prey apprehension and the amount of harvesting effort surpass some threshold value. At a low intrinsic growth rate of the predator, the system with type II functional response exhibits a transcritical bifurcation when the harvesting effort crosses the threshold value. We study the dynamic optimization of the harvesting policy by employing Pontryagin’s maximum principle under the three different functional responses of the predator and obtain the harvesting yields corresponding to the dynamic reference point OSY. We also examine the existence of the bionomic equilibrium corresponding to the open access (OA) scenario and compare the combined harvesting yield with the yields obtained from the static reference point MSY and the dynamic reference point OSY. We observe that OSY provides the maximum economic benefit to the fishery compared to MSY and OA.</description><identifier>ISSN: 0971-3514</identifier><identifier>EISSN: 0974-6870</identifier><identifier>DOI: 10.1007/s12591-022-00612-z</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Bifurcations ; Computer Science ; Engineering ; Fisheries ; Mathematics ; Mathematics and Statistics ; Original Research ; Pontryagin principle ; Predator-prey simulation ; Predators ; Steady state</subject><ispartof>Differential equations and dynamical systems, 2024-10, Vol.32 (4), p.1067-1096</ispartof><rights>Foundation for Scientific Research and Technological Innovation 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-7b4ee929ebffec396adc3111fda505038d78d42733e4857210302bcd77bd01df3</citedby><cites>FETCH-LOGICAL-c249t-7b4ee929ebffec396adc3111fda505038d78d42733e4857210302bcd77bd01df3</cites><orcidid>0000-0003-4600-2776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Halder, Susmita</creatorcontrib><creatorcontrib>Bhattacharyya, Joydeb</creatorcontrib><creatorcontrib>Pal, Samares</creatorcontrib><title>Optimal Harvesting on a Modified Leslie–Gower Predator–Prey Model Under Fear and Allee Effects on Prey</title><title>Differential equations and dynamical systems</title><addtitle>Differ Equ Dyn Syst</addtitle><description>In this article, we have analyzed the effect of prey apprehension on a modified Leslie–Gower predator–prey fishery model with Allee effect on the prey population. We investigate the predator–prey dynamics for linear, Holling type II, and Holling type III functional responses of the predator and observed that the systems undergo a sudden change in dynamics from the coexistence steady state to the prey-free steady-state when the level of prey apprehension and the amount of harvesting effort surpass some threshold value. At a low intrinsic growth rate of the predator, the system with type II functional response exhibits a transcritical bifurcation when the harvesting effort crosses the threshold value. We study the dynamic optimization of the harvesting policy by employing Pontryagin’s maximum principle under the three different functional responses of the predator and obtain the harvesting yields corresponding to the dynamic reference point OSY. We also examine the existence of the bionomic equilibrium corresponding to the open access (OA) scenario and compare the combined harvesting yield with the yields obtained from the static reference point MSY and the dynamic reference point OSY. We observe that OSY provides the maximum economic benefit to the fishery compared to MSY and OA.</description><subject>Bifurcations</subject><subject>Computer Science</subject><subject>Engineering</subject><subject>Fisheries</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Research</subject><subject>Pontryagin principle</subject><subject>Predator-prey simulation</subject><subject>Predators</subject><subject>Steady state</subject><issn>0971-3514</issn><issn>0974-6870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAURS0EEqWwAUaWGBv8S50Mq6ofpKIyoGPLiV-qVCEudgpqR-yBHbISnAaJGSM_2eeeJ1-Ebhm9Z5Sqh8B4kjFCOSeUjhgnxzM0oJmSZJQqen6aGREJk5foKoRthFQm1QBtV7u2ejU1Xhj_DqGtmg12DTb4ydmqrMDiJYS6gu_Pr7n7AI-fPVjTOh8v4njoOKjxurHxbQbGY9NYPK5rADwtSyja0Pk69BpdlKYOcPN7DtF6Nn2ZLMhyNX-cjJek4DJricolQMYzyLu4yEbGFoIxVlqT0ISK1KrUSq6EAJkmijMqKM8Lq1RuKbOlGKK73rvz7m0f_6S3bu-buFJHTyJTGiWR4j1VeBeCh1LvfCzCHzSjuutU953q2Kk-daqPMST6UIhwswH_p_4n9QOf7Hvx</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Halder, Susmita</creator><creator>Bhattacharyya, Joydeb</creator><creator>Pal, Samares</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4600-2776</orcidid></search><sort><creationdate>20241001</creationdate><title>Optimal Harvesting on a Modified Leslie–Gower Predator–Prey Model Under Fear and Allee Effects on Prey</title><author>Halder, Susmita ; Bhattacharyya, Joydeb ; Pal, Samares</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-7b4ee929ebffec396adc3111fda505038d78d42733e4857210302bcd77bd01df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bifurcations</topic><topic>Computer Science</topic><topic>Engineering</topic><topic>Fisheries</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Research</topic><topic>Pontryagin principle</topic><topic>Predator-prey simulation</topic><topic>Predators</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halder, Susmita</creatorcontrib><creatorcontrib>Bhattacharyya, Joydeb</creatorcontrib><creatorcontrib>Pal, Samares</creatorcontrib><collection>CrossRef</collection><jtitle>Differential equations and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halder, Susmita</au><au>Bhattacharyya, Joydeb</au><au>Pal, Samares</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Harvesting on a Modified Leslie–Gower Predator–Prey Model Under Fear and Allee Effects on Prey</atitle><jtitle>Differential equations and dynamical systems</jtitle><stitle>Differ Equ Dyn Syst</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>32</volume><issue>4</issue><spage>1067</spage><epage>1096</epage><pages>1067-1096</pages><issn>0971-3514</issn><eissn>0974-6870</eissn><abstract>In this article, we have analyzed the effect of prey apprehension on a modified Leslie–Gower predator–prey fishery model with Allee effect on the prey population. We investigate the predator–prey dynamics for linear, Holling type II, and Holling type III functional responses of the predator and observed that the systems undergo a sudden change in dynamics from the coexistence steady state to the prey-free steady-state when the level of prey apprehension and the amount of harvesting effort surpass some threshold value. At a low intrinsic growth rate of the predator, the system with type II functional response exhibits a transcritical bifurcation when the harvesting effort crosses the threshold value. We study the dynamic optimization of the harvesting policy by employing Pontryagin’s maximum principle under the three different functional responses of the predator and obtain the harvesting yields corresponding to the dynamic reference point OSY. We also examine the existence of the bionomic equilibrium corresponding to the open access (OA) scenario and compare the combined harvesting yield with the yields obtained from the static reference point MSY and the dynamic reference point OSY. We observe that OSY provides the maximum economic benefit to the fishery compared to MSY and OA.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12591-022-00612-z</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-4600-2776</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0971-3514 |
ispartof | Differential equations and dynamical systems, 2024-10, Vol.32 (4), p.1067-1096 |
issn | 0971-3514 0974-6870 |
language | eng |
recordid | cdi_proquest_journals_3115480038 |
source | Springer Nature |
subjects | Bifurcations Computer Science Engineering Fisheries Mathematics Mathematics and Statistics Original Research Pontryagin principle Predator-prey simulation Predators Steady state |
title | Optimal Harvesting on a Modified Leslie–Gower Predator–Prey Model Under Fear and Allee Effects on Prey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A30%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Harvesting%20on%20a%20Modified%20Leslie%E2%80%93Gower%20Predator%E2%80%93Prey%20Model%20Under%20Fear%20and%20Allee%20Effects%20on%20Prey&rft.jtitle=Differential%20equations%20and%20dynamical%20systems&rft.au=Halder,%20Susmita&rft.date=2024-10-01&rft.volume=32&rft.issue=4&rft.spage=1067&rft.epage=1096&rft.pages=1067-1096&rft.issn=0971-3514&rft.eissn=0974-6870&rft_id=info:doi/10.1007/s12591-022-00612-z&rft_dat=%3Cproquest_cross%3E3115480038%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-7b4ee929ebffec396adc3111fda505038d78d42733e4857210302bcd77bd01df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115480038&rft_id=info:pmid/&rfr_iscdi=true |