Loading…
Dynamic study of a laminated curved beam made of bimodular composite material with equivalent stiffness method
The mathematical foundation for this research study is based on classical beam theories. The equivalent Stiffness approach was used to do free vibration analysis on simply supported thin curved beams. A complete parametric investigation of the free vibration response of a hypothetical bimodular comp...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3221 |
creator | Kumar, Amrendra Kumar, Manish Kumar, Amit Kumar, Anjani Kumar, Shashi Bhushan Thakur, Raj Mohan Ansu, Alok Kumar |
description | The mathematical foundation for this research study is based on classical beam theories. The equivalent Stiffness approach was used to do free vibration analysis on simply supported thin curved beams. A complete parametric investigation of the free vibration response of a hypothetical bimodular compoᵴite material laminated simply supported curved beam was reported. Bimodular composite laminated structures are more complex to analyse than unimodular materials. The motion equations are derived from Hamilton's energy equation and solved using a matrix technique. The fundamental purpose of this investigation will add to a better understanding of free vibration analyᵴis in simply supported bimodular compoᵴite laminated curved beams. |
doi_str_mv | 10.1063/5.0235987 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3115584835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115584835</sourcerecordid><originalsourceid>FETCH-LOGICAL-p637-fc15e2b4ec3b206b04af73343a3d6fb67e30196dbba8ac234164998f81d973913</originalsourceid><addsrcrecordid>eNotkD1rwzAYhEVpoW7aof9A0K3gVPIrS9ZY0k8IdMnQzUiWRBRsy7HklPz7OiTTwd1xBw9Cj5QsKeHwUi5JAaWsxBXKaFnSXHDKr1FGiGR5weD3Ft3FuCOkkEJUGerfjr3qfINjmswRB4cVbmejV8ka3EzjYRZtVYc7Zewp174LZmrViJvQDSH6ZOcs2dGrFv_5tMV2P_mDam2f5lXvXG9jxJ1N22Du0Y1TbbQPF12gzcf7ZvWVr38-v1ev63zgIHLX0NIWmtkGdEG4Jkw5AcBAgeFOc2GBUMmN1qpSTQGMciZl5SpqpABJYYGezrPDGPaTjanehWns58ca6IylYhWUc-v53IqNTyr50NfD6Ds1HmtK6hPOuqwvOOEf0mVoTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3115584835</pqid></control><display><type>conference_proceeding</type><title>Dynamic study of a laminated curved beam made of bimodular composite material with equivalent stiffness method</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kumar, Amrendra ; Kumar, Manish ; Kumar, Amit ; Kumar, Anjani ; Kumar, Shashi Bhushan ; Thakur, Raj Mohan ; Ansu, Alok Kumar</creator><contributor>Thirumalaisamy, Ramakrishnan ; Seenivasan, Venkatesh ; Ramalingam, Suresh Kumar</contributor><creatorcontrib>Kumar, Amrendra ; Kumar, Manish ; Kumar, Amit ; Kumar, Anjani ; Kumar, Shashi Bhushan ; Thakur, Raj Mohan ; Ansu, Alok Kumar ; Thirumalaisamy, Ramakrishnan ; Seenivasan, Venkatesh ; Ramalingam, Suresh Kumar</creatorcontrib><description>The mathematical foundation for this research study is based on classical beam theories. The equivalent Stiffness approach was used to do free vibration analysis on simply supported thin curved beams. A complete parametric investigation of the free vibration response of a hypothetical bimodular compoᵴite material laminated simply supported curved beam was reported. Bimodular composite laminated structures are more complex to analyse than unimodular materials. The motion equations are derived from Hamilton's energy equation and solved using a matrix technique. The fundamental purpose of this investigation will add to a better understanding of free vibration analyᵴis in simply supported bimodular compoᵴite laminated curved beams.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0235987</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Composite materials ; Curved beams ; Equations of motion ; Equivalence ; Free vibration ; Stiffness ; Vibration analysis ; Vibration response</subject><ispartof>AIP conference proceedings, 2024, Vol.3221 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>Thirumalaisamy, Ramakrishnan</contributor><contributor>Seenivasan, Venkatesh</contributor><contributor>Ramalingam, Suresh Kumar</contributor><creatorcontrib>Kumar, Amrendra</creatorcontrib><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Kumar, Anjani</creatorcontrib><creatorcontrib>Kumar, Shashi Bhushan</creatorcontrib><creatorcontrib>Thakur, Raj Mohan</creatorcontrib><creatorcontrib>Ansu, Alok Kumar</creatorcontrib><title>Dynamic study of a laminated curved beam made of bimodular composite material with equivalent stiffness method</title><title>AIP conference proceedings</title><description>The mathematical foundation for this research study is based on classical beam theories. The equivalent Stiffness approach was used to do free vibration analysis on simply supported thin curved beams. A complete parametric investigation of the free vibration response of a hypothetical bimodular compoᵴite material laminated simply supported curved beam was reported. Bimodular composite laminated structures are more complex to analyse than unimodular materials. The motion equations are derived from Hamilton's energy equation and solved using a matrix technique. The fundamental purpose of this investigation will add to a better understanding of free vibration analyᵴis in simply supported bimodular compoᵴite laminated curved beams.</description><subject>Composite materials</subject><subject>Curved beams</subject><subject>Equations of motion</subject><subject>Equivalence</subject><subject>Free vibration</subject><subject>Stiffness</subject><subject>Vibration analysis</subject><subject>Vibration response</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkD1rwzAYhEVpoW7aof9A0K3gVPIrS9ZY0k8IdMnQzUiWRBRsy7HklPz7OiTTwd1xBw9Cj5QsKeHwUi5JAaWsxBXKaFnSXHDKr1FGiGR5weD3Ft3FuCOkkEJUGerfjr3qfINjmswRB4cVbmejV8ka3EzjYRZtVYc7Zewp174LZmrViJvQDSH6ZOcs2dGrFv_5tMV2P_mDam2f5lXvXG9jxJ1N22Du0Y1TbbQPF12gzcf7ZvWVr38-v1ev63zgIHLX0NIWmtkGdEG4Jkw5AcBAgeFOc2GBUMmN1qpSTQGMciZl5SpqpABJYYGezrPDGPaTjanehWns58ca6IylYhWUc-v53IqNTyr50NfD6Ds1HmtK6hPOuqwvOOEf0mVoTg</recordid><startdate>20241011</startdate><enddate>20241011</enddate><creator>Kumar, Amrendra</creator><creator>Kumar, Manish</creator><creator>Kumar, Amit</creator><creator>Kumar, Anjani</creator><creator>Kumar, Shashi Bhushan</creator><creator>Thakur, Raj Mohan</creator><creator>Ansu, Alok Kumar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241011</creationdate><title>Dynamic study of a laminated curved beam made of bimodular composite material with equivalent stiffness method</title><author>Kumar, Amrendra ; Kumar, Manish ; Kumar, Amit ; Kumar, Anjani ; Kumar, Shashi Bhushan ; Thakur, Raj Mohan ; Ansu, Alok Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p637-fc15e2b4ec3b206b04af73343a3d6fb67e30196dbba8ac234164998f81d973913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Composite materials</topic><topic>Curved beams</topic><topic>Equations of motion</topic><topic>Equivalence</topic><topic>Free vibration</topic><topic>Stiffness</topic><topic>Vibration analysis</topic><topic>Vibration response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Amrendra</creatorcontrib><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Kumar, Anjani</creatorcontrib><creatorcontrib>Kumar, Shashi Bhushan</creatorcontrib><creatorcontrib>Thakur, Raj Mohan</creatorcontrib><creatorcontrib>Ansu, Alok Kumar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Amrendra</au><au>Kumar, Manish</au><au>Kumar, Amit</au><au>Kumar, Anjani</au><au>Kumar, Shashi Bhushan</au><au>Thakur, Raj Mohan</au><au>Ansu, Alok Kumar</au><au>Thirumalaisamy, Ramakrishnan</au><au>Seenivasan, Venkatesh</au><au>Ramalingam, Suresh Kumar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic study of a laminated curved beam made of bimodular composite material with equivalent stiffness method</atitle><btitle>AIP conference proceedings</btitle><date>2024-10-11</date><risdate>2024</risdate><volume>3221</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The mathematical foundation for this research study is based on classical beam theories. The equivalent Stiffness approach was used to do free vibration analysis on simply supported thin curved beams. A complete parametric investigation of the free vibration response of a hypothetical bimodular compoᵴite material laminated simply supported curved beam was reported. Bimodular composite laminated structures are more complex to analyse than unimodular materials. The motion equations are derived from Hamilton's energy equation and solved using a matrix technique. The fundamental purpose of this investigation will add to a better understanding of free vibration analyᵴis in simply supported bimodular compoᵴite laminated curved beams.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0235987</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3221 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3115584835 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Composite materials Curved beams Equations of motion Equivalence Free vibration Stiffness Vibration analysis Vibration response |
title | Dynamic study of a laminated curved beam made of bimodular composite material with equivalent stiffness method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20study%20of%20a%20laminated%20curved%20beam%20made%20of%20bimodular%20composite%20material%20with%20equivalent%20stiffness%20method&rft.btitle=AIP%20conference%20proceedings&rft.au=Kumar,%20Amrendra&rft.date=2024-10-11&rft.volume=3221&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0235987&rft_dat=%3Cproquest_scita%3E3115584835%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p637-fc15e2b4ec3b206b04af73343a3d6fb67e30196dbba8ac234164998f81d973913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115584835&rft_id=info:pmid/&rfr_iscdi=true |