Loading…

Single-copy stabilizer testing

We consider the problem of testing whether an unknown \(n\)-qubit quantum state \(|\psi\rangle\) is a stabilizer state, with only single-copy access. We give an algorithm solving this problem using \(O(n)\) copies, and conversely prove that \(\Omega(\sqrt{n})\) copies are required for any algorithm....

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Hinsche, Marcel, Helsen, Jonas
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hinsche, Marcel
Helsen, Jonas
description We consider the problem of testing whether an unknown \(n\)-qubit quantum state \(|\psi\rangle\) is a stabilizer state, with only single-copy access. We give an algorithm solving this problem using \(O(n)\) copies, and conversely prove that \(\Omega(\sqrt{n})\) copies are required for any algorithm. The main observation behind our algorithm is that when repeatedly measuring in a randomly chosen stabilizer basis, stabilizer states are the most likely among the set of all pure states to exhibit linear dependencies in measurement outcomes. Our algorithm is designed to probe deviations from this extremal behavior. For the lower bound, we first reduce stabilizer testing to the task of distinguishing random stabilizer states from the maximally mixed state. We then argue that, without loss of generality, it is sufficient to consider measurement strategies that a) lie in the commutant of the tensor action of the Clifford group and b) satisfy a Positive Partial Transpose (PPT) condition. By leveraging these constraints, together with novel results on the partial transposes of the generators of the Clifford commutant, we derive the lower bound on the sample complexity.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3115595976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115595976</sourcerecordid><originalsourceid>FETCH-proquest_journals_31155959763</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQC87MS89J1U3OL6hUKC5JTMrMyaxKLVIoSS0uAcrwMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MJSoJr4rPzSojygVLyxoaGpqaWppbmZMXGqALZJLMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115595976</pqid></control><display><type>article</type><title>Single-copy stabilizer testing</title><source>Publicly Available Content Database (ProQuest Open Access資料庫)</source><creator>Hinsche, Marcel ; Helsen, Jonas</creator><creatorcontrib>Hinsche, Marcel ; Helsen, Jonas</creatorcontrib><description>We consider the problem of testing whether an unknown \(n\)-qubit quantum state \(|\psi\rangle\) is a stabilizer state, with only single-copy access. We give an algorithm solving this problem using \(O(n)\) copies, and conversely prove that \(\Omega(\sqrt{n})\) copies are required for any algorithm. The main observation behind our algorithm is that when repeatedly measuring in a randomly chosen stabilizer basis, stabilizer states are the most likely among the set of all pure states to exhibit linear dependencies in measurement outcomes. Our algorithm is designed to probe deviations from this extremal behavior. For the lower bound, we first reduce stabilizer testing to the task of distinguishing random stabilizer states from the maximally mixed state. We then argue that, without loss of generality, it is sufficient to consider measurement strategies that a) lie in the commutant of the tensor action of the Clifford group and b) satisfy a Positive Partial Transpose (PPT) condition. By leveraging these constraints, together with novel results on the partial transposes of the generators of the Clifford commutant, we derive the lower bound on the sample complexity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Lower bounds ; Qubits (quantum computing) ; Tensors</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3115595976?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Hinsche, Marcel</creatorcontrib><creatorcontrib>Helsen, Jonas</creatorcontrib><title>Single-copy stabilizer testing</title><title>arXiv.org</title><description>We consider the problem of testing whether an unknown \(n\)-qubit quantum state \(|\psi\rangle\) is a stabilizer state, with only single-copy access. We give an algorithm solving this problem using \(O(n)\) copies, and conversely prove that \(\Omega(\sqrt{n})\) copies are required for any algorithm. The main observation behind our algorithm is that when repeatedly measuring in a randomly chosen stabilizer basis, stabilizer states are the most likely among the set of all pure states to exhibit linear dependencies in measurement outcomes. Our algorithm is designed to probe deviations from this extremal behavior. For the lower bound, we first reduce stabilizer testing to the task of distinguishing random stabilizer states from the maximally mixed state. We then argue that, without loss of generality, it is sufficient to consider measurement strategies that a) lie in the commutant of the tensor action of the Clifford group and b) satisfy a Positive Partial Transpose (PPT) condition. By leveraging these constraints, together with novel results on the partial transposes of the generators of the Clifford commutant, we derive the lower bound on the sample complexity.</description><subject>Algorithms</subject><subject>Lower bounds</subject><subject>Qubits (quantum computing)</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQC87MS89J1U3OL6hUKC5JTMrMyaxKLVIoSS0uAcrwMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MJSoJr4rPzSojygVLyxoaGpqaWppbmZMXGqALZJLMo</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>Hinsche, Marcel</creator><creator>Helsen, Jonas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241010</creationdate><title>Single-copy stabilizer testing</title><author>Hinsche, Marcel ; Helsen, Jonas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31155959763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Lower bounds</topic><topic>Qubits (quantum computing)</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Hinsche, Marcel</creatorcontrib><creatorcontrib>Helsen, Jonas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (ProQuest Open Access資料庫)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinsche, Marcel</au><au>Helsen, Jonas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Single-copy stabilizer testing</atitle><jtitle>arXiv.org</jtitle><date>2024-10-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We consider the problem of testing whether an unknown \(n\)-qubit quantum state \(|\psi\rangle\) is a stabilizer state, with only single-copy access. We give an algorithm solving this problem using \(O(n)\) copies, and conversely prove that \(\Omega(\sqrt{n})\) copies are required for any algorithm. The main observation behind our algorithm is that when repeatedly measuring in a randomly chosen stabilizer basis, stabilizer states are the most likely among the set of all pure states to exhibit linear dependencies in measurement outcomes. Our algorithm is designed to probe deviations from this extremal behavior. For the lower bound, we first reduce stabilizer testing to the task of distinguishing random stabilizer states from the maximally mixed state. We then argue that, without loss of generality, it is sufficient to consider measurement strategies that a) lie in the commutant of the tensor action of the Clifford group and b) satisfy a Positive Partial Transpose (PPT) condition. By leveraging these constraints, together with novel results on the partial transposes of the generators of the Clifford commutant, we derive the lower bound on the sample complexity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3115595976
source Publicly Available Content Database (ProQuest Open Access資料庫)
subjects Algorithms
Lower bounds
Qubits (quantum computing)
Tensors
title Single-copy stabilizer testing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Single-copy%20stabilizer%20testing&rft.jtitle=arXiv.org&rft.au=Hinsche,%20Marcel&rft.date=2024-10-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3115595976%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31155959763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115595976&rft_id=info:pmid/&rfr_iscdi=true