Loading…
Heralded and Complete Interconversion Between W State and Knill–Laflamme–Milburn State via State‐Selective Reflection with Robust Fidelity
The interconversion of different types of entangled states not only can realize the information transmission but also play a significant role in quantum information technologies, including increasing scalability and computational power, and reducing error rates. Here, two protocols for achieving a c...
Saved in:
Published in: | Annalen der Physik 2024-10, Vol.536 (10), p.n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2025-2222871bf2ce2709fea3efe80740505961ee44e2d2643f30c595c3ad7fb7077e3 |
container_end_page | n/a |
container_issue | 10 |
container_start_page | |
container_title | Annalen der Physik |
container_volume | 536 |
creator | Ren, Xue‐Mei Guo, Jing Du, Fang‐Fang |
description | The interconversion of different types of entangled states not only can realize the information transmission but also play a significant role in quantum information technologies, including increasing scalability and computational power, and reducing error rates. Here, two protocols for achieving a complete interconversion between W state and Knill–Laflamme–Milburn state assisted by the quantum dot (QD)‐cavity systems and common quantum control gates are proposed. In particular, the protocols employ a heralded approach strategically designed to predict potential failures and facilitate seamless interaction between the QD‐cavity system and photons with the help of a single photon detectors, enhancing experimental accessibility. Through extensive analyzes and evaluations of two protocols, the proposed two protocols achieve remarkable utilization rates of photons (i.e., unit in principle) and achieve near‐unit fidelities and high efficiencies in principle.
Two protocols for achieving interconversion between W state and Knill–Laflamme–Milburn state assisted by quantum dot (QD)‐cavity systems and quantum control gates are proposed. The protocols employ a heralded approach to predict failures and facilitate interaction between the QD‐cavity system and photons. The proposed two protocols achieve remarkable utilization of photons and achieve near‐unit fidelities and high efficiencies in principle. |
doi_str_mv | 10.1002/andp.202400215 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115958469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115958469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2025-2222871bf2ce2709fea3efe80740505961ee44e2d2643f30c595c3ad7fb7077e3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EElXplrUl1im2kzTJshRKK8pDLYhl5CRj4cp54LituusnVOIP-yU4pIIl3viOfObO-CJ0SUmfEsKueZFVfUaYZwvqn6AO9Rl13DCMTlGHEOJaTbxz1KvrpS2JTxq4g_YT0FxlkGHrgEdlXikwgKeFAZ2WxRp0LcsC34DZABT4HS8Mt-8N_FBIpQ67rxkXiuc5WPkoVbLSxRFaS96qw26_AAWpkWvAcxA_0rpupPnA8zJZ1QaPZQZKmu0FOhNc1dA73l30Nr57HU2c2fP9dDScOald3HeYPWFAE8FSYAGJBHAXBIQk8Ozf_GhAATwPWMYGnitckvqRn7o8C0QSkCAAt4uuWt9Kl58rqE28LO3qdmTsUmrp0BtEluq3VKrLutYg4krLnOttTEncBB83wce_wduGqG3YSAXbf-h4-HT78tf7DSrai2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115958469</pqid></control><display><type>article</type><title>Heralded and Complete Interconversion Between W State and Knill–Laflamme–Milburn State via State‐Selective Reflection with Robust Fidelity</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Ren, Xue‐Mei ; Guo, Jing ; Du, Fang‐Fang</creator><creatorcontrib>Ren, Xue‐Mei ; Guo, Jing ; Du, Fang‐Fang</creatorcontrib><description>The interconversion of different types of entangled states not only can realize the information transmission but also play a significant role in quantum information technologies, including increasing scalability and computational power, and reducing error rates. Here, two protocols for achieving a complete interconversion between W state and Knill–Laflamme–Milburn state assisted by the quantum dot (QD)‐cavity systems and common quantum control gates are proposed. In particular, the protocols employ a heralded approach strategically designed to predict potential failures and facilitate seamless interaction between the QD‐cavity system and photons with the help of a single photon detectors, enhancing experimental accessibility. Through extensive analyzes and evaluations of two protocols, the proposed two protocols achieve remarkable utilization rates of photons (i.e., unit in principle) and achieve near‐unit fidelities and high efficiencies in principle.
Two protocols for achieving interconversion between W state and Knill–Laflamme–Milburn state assisted by quantum dot (QD)‐cavity systems and quantum control gates are proposed. The protocols employ a heralded approach to predict failures and facilitate interaction between the QD‐cavity system and photons. The proposed two protocols achieve remarkable utilization of photons and achieve near‐unit fidelities and high efficiencies in principle.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.202400215</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>conversion of entangled states ; Entangled states ; Photons ; quantum communication ; Quantum computing ; Quantum dots ; Quantum entanglement ; quantum information technology ; Quantum phenomena</subject><ispartof>Annalen der Physik, 2024-10, Vol.536 (10), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2025-2222871bf2ce2709fea3efe80740505961ee44e2d2643f30c595c3ad7fb7077e3</cites><orcidid>0000-0002-1213-3041 ; 0009-0006-0089-6187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ren, Xue‐Mei</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Du, Fang‐Fang</creatorcontrib><title>Heralded and Complete Interconversion Between W State and Knill–Laflamme–Milburn State via State‐Selective Reflection with Robust Fidelity</title><title>Annalen der Physik</title><description>The interconversion of different types of entangled states not only can realize the information transmission but also play a significant role in quantum information technologies, including increasing scalability and computational power, and reducing error rates. Here, two protocols for achieving a complete interconversion between W state and Knill–Laflamme–Milburn state assisted by the quantum dot (QD)‐cavity systems and common quantum control gates are proposed. In particular, the protocols employ a heralded approach strategically designed to predict potential failures and facilitate seamless interaction between the QD‐cavity system and photons with the help of a single photon detectors, enhancing experimental accessibility. Through extensive analyzes and evaluations of two protocols, the proposed two protocols achieve remarkable utilization rates of photons (i.e., unit in principle) and achieve near‐unit fidelities and high efficiencies in principle.
Two protocols for achieving interconversion between W state and Knill–Laflamme–Milburn state assisted by quantum dot (QD)‐cavity systems and quantum control gates are proposed. The protocols employ a heralded approach to predict failures and facilitate interaction between the QD‐cavity system and photons. The proposed two protocols achieve remarkable utilization of photons and achieve near‐unit fidelities and high efficiencies in principle.</description><subject>conversion of entangled states</subject><subject>Entangled states</subject><subject>Photons</subject><subject>quantum communication</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Quantum entanglement</subject><subject>quantum information technology</subject><subject>Quantum phenomena</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EElXplrUl1im2kzTJshRKK8pDLYhl5CRj4cp54LituusnVOIP-yU4pIIl3viOfObO-CJ0SUmfEsKueZFVfUaYZwvqn6AO9Rl13DCMTlGHEOJaTbxz1KvrpS2JTxq4g_YT0FxlkGHrgEdlXikwgKeFAZ2WxRp0LcsC34DZABT4HS8Mt-8N_FBIpQ67rxkXiuc5WPkoVbLSxRFaS96qw26_AAWpkWvAcxA_0rpupPnA8zJZ1QaPZQZKmu0FOhNc1dA73l30Nr57HU2c2fP9dDScOald3HeYPWFAE8FSYAGJBHAXBIQk8Ozf_GhAATwPWMYGnitckvqRn7o8C0QSkCAAt4uuWt9Kl58rqE28LO3qdmTsUmrp0BtEluq3VKrLutYg4krLnOttTEncBB83wce_wduGqG3YSAXbf-h4-HT78tf7DSrai2g</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Ren, Xue‐Mei</creator><creator>Guo, Jing</creator><creator>Du, Fang‐Fang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1213-3041</orcidid><orcidid>https://orcid.org/0009-0006-0089-6187</orcidid></search><sort><creationdate>202410</creationdate><title>Heralded and Complete Interconversion Between W State and Knill–Laflamme–Milburn State via State‐Selective Reflection with Robust Fidelity</title><author>Ren, Xue‐Mei ; Guo, Jing ; Du, Fang‐Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2025-2222871bf2ce2709fea3efe80740505961ee44e2d2643f30c595c3ad7fb7077e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>conversion of entangled states</topic><topic>Entangled states</topic><topic>Photons</topic><topic>quantum communication</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Quantum entanglement</topic><topic>quantum information technology</topic><topic>Quantum phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Xue‐Mei</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Du, Fang‐Fang</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Xue‐Mei</au><au>Guo, Jing</au><au>Du, Fang‐Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heralded and Complete Interconversion Between W State and Knill–Laflamme–Milburn State via State‐Selective Reflection with Robust Fidelity</atitle><jtitle>Annalen der Physik</jtitle><date>2024-10</date><risdate>2024</risdate><volume>536</volume><issue>10</issue><epage>n/a</epage><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>The interconversion of different types of entangled states not only can realize the information transmission but also play a significant role in quantum information technologies, including increasing scalability and computational power, and reducing error rates. Here, two protocols for achieving a complete interconversion between W state and Knill–Laflamme–Milburn state assisted by the quantum dot (QD)‐cavity systems and common quantum control gates are proposed. In particular, the protocols employ a heralded approach strategically designed to predict potential failures and facilitate seamless interaction between the QD‐cavity system and photons with the help of a single photon detectors, enhancing experimental accessibility. Through extensive analyzes and evaluations of two protocols, the proposed two protocols achieve remarkable utilization rates of photons (i.e., unit in principle) and achieve near‐unit fidelities and high efficiencies in principle.
Two protocols for achieving interconversion between W state and Knill–Laflamme–Milburn state assisted by quantum dot (QD)‐cavity systems and quantum control gates are proposed. The protocols employ a heralded approach to predict failures and facilitate interaction between the QD‐cavity system and photons. The proposed two protocols achieve remarkable utilization of photons and achieve near‐unit fidelities and high efficiencies in principle.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/andp.202400215</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1213-3041</orcidid><orcidid>https://orcid.org/0009-0006-0089-6187</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-3804 |
ispartof | Annalen der Physik, 2024-10, Vol.536 (10), p.n/a |
issn | 0003-3804 1521-3889 |
language | eng |
recordid | cdi_proquest_journals_3115958469 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | conversion of entangled states Entangled states Photons quantum communication Quantum computing Quantum dots Quantum entanglement quantum information technology Quantum phenomena |
title | Heralded and Complete Interconversion Between W State and Knill–Laflamme–Milburn State via State‐Selective Reflection with Robust Fidelity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heralded%20and%20Complete%20Interconversion%20Between%20W%20State%20and%20Knill%E2%80%93Laflamme%E2%80%93Milburn%20State%20via%20State%E2%80%90Selective%20Reflection%20with%20Robust%20Fidelity&rft.jtitle=Annalen%20der%20Physik&rft.au=Ren,%20Xue%E2%80%90Mei&rft.date=2024-10&rft.volume=536&rft.issue=10&rft.epage=n/a&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.202400215&rft_dat=%3Cproquest_cross%3E3115958469%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2025-2222871bf2ce2709fea3efe80740505961ee44e2d2643f30c595c3ad7fb7077e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115958469&rft_id=info:pmid/&rfr_iscdi=true |