Loading…

Heralded and Complete Interconversion Between W State and Knill–Laflamme–Milburn State via State‐Selective Reflection with Robust Fidelity

The interconversion of different types of entangled states not only can realize the information transmission but also play a significant role in quantum information technologies, including increasing scalability and computational power, and reducing error rates. Here, two protocols for achieving a c...

Full description

Saved in:
Bibliographic Details
Published in:Annalen der Physik 2024-10, Vol.536 (10), p.n/a
Main Authors: Ren, Xue‐Mei, Guo, Jing, Du, Fang‐Fang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2025-2222871bf2ce2709fea3efe80740505961ee44e2d2643f30c595c3ad7fb7077e3
container_end_page n/a
container_issue 10
container_start_page
container_title Annalen der Physik
container_volume 536
creator Ren, Xue‐Mei
Guo, Jing
Du, Fang‐Fang
description The interconversion of different types of entangled states not only can realize the information transmission but also play a significant role in quantum information technologies, including increasing scalability and computational power, and reducing error rates. Here, two protocols for achieving a complete interconversion between W state and Knill–Laflamme–Milburn state assisted by the quantum dot (QD)‐cavity systems and common quantum control gates are proposed. In particular, the protocols employ a heralded approach strategically designed to predict potential failures and facilitate seamless interaction between the QD‐cavity system and photons with the help of a single photon detectors, enhancing experimental accessibility. Through extensive analyzes and evaluations of two protocols, the proposed two protocols achieve remarkable utilization rates of photons (i.e., unit in principle) and achieve near‐unit fidelities and high efficiencies in principle. Two protocols for achieving interconversion between W state and Knill–Laflamme–Milburn state assisted by quantum dot (QD)‐cavity systems and quantum control gates are proposed. The protocols employ a heralded approach to predict failures and facilitate interaction between the QD‐cavity system and photons. The proposed two protocols achieve remarkable utilization of photons and achieve near‐unit fidelities and high efficiencies in principle.
doi_str_mv 10.1002/andp.202400215
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115958469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115958469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2025-2222871bf2ce2709fea3efe80740505961ee44e2d2643f30c595c3ad7fb7077e3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EElXplrUl1im2kzTJshRKK8pDLYhl5CRj4cp54LituusnVOIP-yU4pIIl3viOfObO-CJ0SUmfEsKueZFVfUaYZwvqn6AO9Rl13DCMTlGHEOJaTbxz1KvrpS2JTxq4g_YT0FxlkGHrgEdlXikwgKeFAZ2WxRp0LcsC34DZABT4HS8Mt-8N_FBIpQ67rxkXiuc5WPkoVbLSxRFaS96qw26_AAWpkWvAcxA_0rpupPnA8zJZ1QaPZQZKmu0FOhNc1dA73l30Nr57HU2c2fP9dDScOald3HeYPWFAE8FSYAGJBHAXBIQk8Ozf_GhAATwPWMYGnitckvqRn7o8C0QSkCAAt4uuWt9Kl58rqE28LO3qdmTsUmrp0BtEluq3VKrLutYg4krLnOttTEncBB83wce_wduGqG3YSAXbf-h4-HT78tf7DSrai2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115958469</pqid></control><display><type>article</type><title>Heralded and Complete Interconversion Between W State and Knill–Laflamme–Milburn State via State‐Selective Reflection with Robust Fidelity</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ren, Xue‐Mei ; Guo, Jing ; Du, Fang‐Fang</creator><creatorcontrib>Ren, Xue‐Mei ; Guo, Jing ; Du, Fang‐Fang</creatorcontrib><description>The interconversion of different types of entangled states not only can realize the information transmission but also play a significant role in quantum information technologies, including increasing scalability and computational power, and reducing error rates. Here, two protocols for achieving a complete interconversion between W state and Knill–Laflamme–Milburn state assisted by the quantum dot (QD)‐cavity systems and common quantum control gates are proposed. In particular, the protocols employ a heralded approach strategically designed to predict potential failures and facilitate seamless interaction between the QD‐cavity system and photons with the help of a single photon detectors, enhancing experimental accessibility. Through extensive analyzes and evaluations of two protocols, the proposed two protocols achieve remarkable utilization rates of photons (i.e., unit in principle) and achieve near‐unit fidelities and high efficiencies in principle. Two protocols for achieving interconversion between W state and Knill–Laflamme–Milburn state assisted by quantum dot (QD)‐cavity systems and quantum control gates are proposed. The protocols employ a heralded approach to predict failures and facilitate interaction between the QD‐cavity system and photons. The proposed two protocols achieve remarkable utilization of photons and achieve near‐unit fidelities and high efficiencies in principle.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.202400215</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>conversion of entangled states ; Entangled states ; Photons ; quantum communication ; Quantum computing ; Quantum dots ; Quantum entanglement ; quantum information technology ; Quantum phenomena</subject><ispartof>Annalen der Physik, 2024-10, Vol.536 (10), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2025-2222871bf2ce2709fea3efe80740505961ee44e2d2643f30c595c3ad7fb7077e3</cites><orcidid>0000-0002-1213-3041 ; 0009-0006-0089-6187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ren, Xue‐Mei</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Du, Fang‐Fang</creatorcontrib><title>Heralded and Complete Interconversion Between W State and Knill–Laflamme–Milburn State via State‐Selective Reflection with Robust Fidelity</title><title>Annalen der Physik</title><description>The interconversion of different types of entangled states not only can realize the information transmission but also play a significant role in quantum information technologies, including increasing scalability and computational power, and reducing error rates. Here, two protocols for achieving a complete interconversion between W state and Knill–Laflamme–Milburn state assisted by the quantum dot (QD)‐cavity systems and common quantum control gates are proposed. In particular, the protocols employ a heralded approach strategically designed to predict potential failures and facilitate seamless interaction between the QD‐cavity system and photons with the help of a single photon detectors, enhancing experimental accessibility. Through extensive analyzes and evaluations of two protocols, the proposed two protocols achieve remarkable utilization rates of photons (i.e., unit in principle) and achieve near‐unit fidelities and high efficiencies in principle. Two protocols for achieving interconversion between W state and Knill–Laflamme–Milburn state assisted by quantum dot (QD)‐cavity systems and quantum control gates are proposed. The protocols employ a heralded approach to predict failures and facilitate interaction between the QD‐cavity system and photons. The proposed two protocols achieve remarkable utilization of photons and achieve near‐unit fidelities and high efficiencies in principle.</description><subject>conversion of entangled states</subject><subject>Entangled states</subject><subject>Photons</subject><subject>quantum communication</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Quantum entanglement</subject><subject>quantum information technology</subject><subject>Quantum phenomena</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EElXplrUl1im2kzTJshRKK8pDLYhl5CRj4cp54LituusnVOIP-yU4pIIl3viOfObO-CJ0SUmfEsKueZFVfUaYZwvqn6AO9Rl13DCMTlGHEOJaTbxz1KvrpS2JTxq4g_YT0FxlkGHrgEdlXikwgKeFAZ2WxRp0LcsC34DZABT4HS8Mt-8N_FBIpQ67rxkXiuc5WPkoVbLSxRFaS96qw26_AAWpkWvAcxA_0rpupPnA8zJZ1QaPZQZKmu0FOhNc1dA73l30Nr57HU2c2fP9dDScOald3HeYPWFAE8FSYAGJBHAXBIQk8Ozf_GhAATwPWMYGnitckvqRn7o8C0QSkCAAt4uuWt9Kl58rqE28LO3qdmTsUmrp0BtEluq3VKrLutYg4krLnOttTEncBB83wce_wduGqG3YSAXbf-h4-HT78tf7DSrai2g</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Ren, Xue‐Mei</creator><creator>Guo, Jing</creator><creator>Du, Fang‐Fang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1213-3041</orcidid><orcidid>https://orcid.org/0009-0006-0089-6187</orcidid></search><sort><creationdate>202410</creationdate><title>Heralded and Complete Interconversion Between W State and Knill–Laflamme–Milburn State via State‐Selective Reflection with Robust Fidelity</title><author>Ren, Xue‐Mei ; Guo, Jing ; Du, Fang‐Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2025-2222871bf2ce2709fea3efe80740505961ee44e2d2643f30c595c3ad7fb7077e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>conversion of entangled states</topic><topic>Entangled states</topic><topic>Photons</topic><topic>quantum communication</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Quantum entanglement</topic><topic>quantum information technology</topic><topic>Quantum phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Xue‐Mei</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Du, Fang‐Fang</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Xue‐Mei</au><au>Guo, Jing</au><au>Du, Fang‐Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heralded and Complete Interconversion Between W State and Knill–Laflamme–Milburn State via State‐Selective Reflection with Robust Fidelity</atitle><jtitle>Annalen der Physik</jtitle><date>2024-10</date><risdate>2024</risdate><volume>536</volume><issue>10</issue><epage>n/a</epage><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>The interconversion of different types of entangled states not only can realize the information transmission but also play a significant role in quantum information technologies, including increasing scalability and computational power, and reducing error rates. Here, two protocols for achieving a complete interconversion between W state and Knill–Laflamme–Milburn state assisted by the quantum dot (QD)‐cavity systems and common quantum control gates are proposed. In particular, the protocols employ a heralded approach strategically designed to predict potential failures and facilitate seamless interaction between the QD‐cavity system and photons with the help of a single photon detectors, enhancing experimental accessibility. Through extensive analyzes and evaluations of two protocols, the proposed two protocols achieve remarkable utilization rates of photons (i.e., unit in principle) and achieve near‐unit fidelities and high efficiencies in principle. Two protocols for achieving interconversion between W state and Knill–Laflamme–Milburn state assisted by quantum dot (QD)‐cavity systems and quantum control gates are proposed. The protocols employ a heralded approach to predict failures and facilitate interaction between the QD‐cavity system and photons. The proposed two protocols achieve remarkable utilization of photons and achieve near‐unit fidelities and high efficiencies in principle.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/andp.202400215</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1213-3041</orcidid><orcidid>https://orcid.org/0009-0006-0089-6187</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-3804
ispartof Annalen der Physik, 2024-10, Vol.536 (10), p.n/a
issn 0003-3804
1521-3889
language eng
recordid cdi_proquest_journals_3115958469
source Wiley-Blackwell Read & Publish Collection
subjects conversion of entangled states
Entangled states
Photons
quantum communication
Quantum computing
Quantum dots
Quantum entanglement
quantum information technology
Quantum phenomena
title Heralded and Complete Interconversion Between W State and Knill–Laflamme–Milburn State via State‐Selective Reflection with Robust Fidelity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heralded%20and%20Complete%20Interconversion%20Between%20W%20State%20and%20Knill%E2%80%93Laflamme%E2%80%93Milburn%20State%20via%20State%E2%80%90Selective%20Reflection%20with%20Robust%20Fidelity&rft.jtitle=Annalen%20der%20Physik&rft.au=Ren,%20Xue%E2%80%90Mei&rft.date=2024-10&rft.volume=536&rft.issue=10&rft.epage=n/a&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.202400215&rft_dat=%3Cproquest_cross%3E3115958469%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2025-2222871bf2ce2709fea3efe80740505961ee44e2d2643f30c595c3ad7fb7077e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115958469&rft_id=info:pmid/&rfr_iscdi=true