Loading…

EM metamaterials sensor based on close coupling of spoof localized surface plasmons

Electromagnetic (EM) metamaterials, with their unparalleled ability to manipulate EM waves, hold significant potential in various fields, including telemetric sensing, which enables wireless measurement of strain and displacement. This paper explores a type of wireless sensor based on spoof localize...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2024-11, Vol.130 (11), Article 794
Main Authors: Li, Xian, Feng, Jing-Wei, Zhang, Zhongwen, Xu, Zhao-Dong, Jiang, Kai-Feng, Soh, Chee-Kiong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-eb4bce80ad54c6075463f0862dbfd1d5af21fe42682f33d6d99d20d2996348f73
container_end_page
container_issue 11
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 130
creator Li, Xian
Feng, Jing-Wei
Zhang, Zhongwen
Xu, Zhao-Dong
Jiang, Kai-Feng
Soh, Chee-Kiong
description Electromagnetic (EM) metamaterials, with their unparalleled ability to manipulate EM waves, hold significant potential in various fields, including telemetric sensing, which enables wireless measurement of strain and displacement. This paper explores a type of wireless sensor based on spoof localized surface plasmons (SLSPs) that generate a resonant evanescent EM wave. When closely coupled, their transmission spectrum is highly sensitive to the distance between the resonators, facilitating near-field measurement of strain and deformation. The theoretical foundation for telemetric measurement using this type of metamaterials is discussed, and a series of tests were conducted for validation. The results indicate a sensitivity of 36 MHz/millimeter at an operating frequency of 4.3 GHz. Both sensors can also be fabricated using printed circuit board (PCB) techniques.
doi_str_mv 10.1007/s00339-024-07968-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3116320889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116320889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-eb4bce80ad54c6075463f0862dbfd1d5af21fe42682f33d6d99d20d2996348f73</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvCD1BZojaMH-vEJVotDwlEAdSW48cqqyQOdraAr8dLkOiYYqY59450ELqkcE0BqpsMwLkiwASBSsmaqCO0oIIzApLDMVqAEhWpuZKn6CznHZQRjC3Q6-YZ934yvZl8ak2XcfZDjgk3JnuH44BtF7PHNu7Hrh22OAacx1h2F63p2q8C5X0Kxno8dib3ccjn6CSUJn_xe5fo_W7ztn4gTy_3j-vbJ2IZwER8IxrrazBuJayEaiUkD1BL5prgqFuZwGjwgsmaBc6ddEo5Bo4pJbmoQ8WX6GruHVP82Ps86V3cp6G81JxSyRnUtSoUmymbYs7JBz2mtjfpU1PQB3l6lqeLPP0jTx9CfA7lAg9bn_6q_0l9A_hvcmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116320889</pqid></control><display><type>article</type><title>EM metamaterials sensor based on close coupling of spoof localized surface plasmons</title><source>Springer Nature</source><creator>Li, Xian ; Feng, Jing-Wei ; Zhang, Zhongwen ; Xu, Zhao-Dong ; Jiang, Kai-Feng ; Soh, Chee-Kiong</creator><creatorcontrib>Li, Xian ; Feng, Jing-Wei ; Zhang, Zhongwen ; Xu, Zhao-Dong ; Jiang, Kai-Feng ; Soh, Chee-Kiong</creatorcontrib><description>Electromagnetic (EM) metamaterials, with their unparalleled ability to manipulate EM waves, hold significant potential in various fields, including telemetric sensing, which enables wireless measurement of strain and displacement. This paper explores a type of wireless sensor based on spoof localized surface plasmons (SLSPs) that generate a resonant evanescent EM wave. When closely coupled, their transmission spectrum is highly sensitive to the distance between the resonators, facilitating near-field measurement of strain and deformation. The theoretical foundation for telemetric measurement using this type of metamaterials is discussed, and a series of tests were conducted for validation. The results indicate a sensitivity of 36 MHz/millimeter at an operating frequency of 4.3 GHz. Both sensors can also be fabricated using printed circuit board (PCB) techniques.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-024-07968-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Circuit boards ; Condensed Matter Physics ; Machines ; Manufacturing ; Metamaterials ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Plasmons ; Printed circuits ; Processes ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2024-11, Vol.130 (11), Article 794</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-eb4bce80ad54c6075463f0862dbfd1d5af21fe42682f33d6d99d20d2996348f73</cites><orcidid>0000-0002-2029-5876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Li, Xian</creatorcontrib><creatorcontrib>Feng, Jing-Wei</creatorcontrib><creatorcontrib>Zhang, Zhongwen</creatorcontrib><creatorcontrib>Xu, Zhao-Dong</creatorcontrib><creatorcontrib>Jiang, Kai-Feng</creatorcontrib><creatorcontrib>Soh, Chee-Kiong</creatorcontrib><title>EM metamaterials sensor based on close coupling of spoof localized surface plasmons</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Electromagnetic (EM) metamaterials, with their unparalleled ability to manipulate EM waves, hold significant potential in various fields, including telemetric sensing, which enables wireless measurement of strain and displacement. This paper explores a type of wireless sensor based on spoof localized surface plasmons (SLSPs) that generate a resonant evanescent EM wave. When closely coupled, their transmission spectrum is highly sensitive to the distance between the resonators, facilitating near-field measurement of strain and deformation. The theoretical foundation for telemetric measurement using this type of metamaterials is discussed, and a series of tests were conducted for validation. The results indicate a sensitivity of 36 MHz/millimeter at an operating frequency of 4.3 GHz. Both sensors can also be fabricated using printed circuit board (PCB) techniques.</description><subject>Characterization and Evaluation of Materials</subject><subject>Circuit boards</subject><subject>Condensed Matter Physics</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Metamaterials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasmons</subject><subject>Printed circuits</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvCD1BZojaMH-vEJVotDwlEAdSW48cqqyQOdraAr8dLkOiYYqY59450ELqkcE0BqpsMwLkiwASBSsmaqCO0oIIzApLDMVqAEhWpuZKn6CznHZQRjC3Q6-YZ934yvZl8ak2XcfZDjgk3JnuH44BtF7PHNu7Hrh22OAacx1h2F63p2q8C5X0Kxno8dib3ccjn6CSUJn_xe5fo_W7ztn4gTy_3j-vbJ2IZwER8IxrrazBuJayEaiUkD1BL5prgqFuZwGjwgsmaBc6ddEo5Bo4pJbmoQ8WX6GruHVP82Ps86V3cp6G81JxSyRnUtSoUmymbYs7JBz2mtjfpU1PQB3l6lqeLPP0jTx9CfA7lAg9bn_6q_0l9A_hvcmo</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Li, Xian</creator><creator>Feng, Jing-Wei</creator><creator>Zhang, Zhongwen</creator><creator>Xu, Zhao-Dong</creator><creator>Jiang, Kai-Feng</creator><creator>Soh, Chee-Kiong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2029-5876</orcidid></search><sort><creationdate>20241101</creationdate><title>EM metamaterials sensor based on close coupling of spoof localized surface plasmons</title><author>Li, Xian ; Feng, Jing-Wei ; Zhang, Zhongwen ; Xu, Zhao-Dong ; Jiang, Kai-Feng ; Soh, Chee-Kiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-eb4bce80ad54c6075463f0862dbfd1d5af21fe42682f33d6d99d20d2996348f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Circuit boards</topic><topic>Condensed Matter Physics</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Metamaterials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasmons</topic><topic>Printed circuits</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xian</creatorcontrib><creatorcontrib>Feng, Jing-Wei</creatorcontrib><creatorcontrib>Zhang, Zhongwen</creatorcontrib><creatorcontrib>Xu, Zhao-Dong</creatorcontrib><creatorcontrib>Jiang, Kai-Feng</creatorcontrib><creatorcontrib>Soh, Chee-Kiong</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xian</au><au>Feng, Jing-Wei</au><au>Zhang, Zhongwen</au><au>Xu, Zhao-Dong</au><au>Jiang, Kai-Feng</au><au>Soh, Chee-Kiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EM metamaterials sensor based on close coupling of spoof localized surface plasmons</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>130</volume><issue>11</issue><artnum>794</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Electromagnetic (EM) metamaterials, with their unparalleled ability to manipulate EM waves, hold significant potential in various fields, including telemetric sensing, which enables wireless measurement of strain and displacement. This paper explores a type of wireless sensor based on spoof localized surface plasmons (SLSPs) that generate a resonant evanescent EM wave. When closely coupled, their transmission spectrum is highly sensitive to the distance between the resonators, facilitating near-field measurement of strain and deformation. The theoretical foundation for telemetric measurement using this type of metamaterials is discussed, and a series of tests were conducted for validation. The results indicate a sensitivity of 36 MHz/millimeter at an operating frequency of 4.3 GHz. Both sensors can also be fabricated using printed circuit board (PCB) techniques.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-024-07968-9</doi><orcidid>https://orcid.org/0000-0002-2029-5876</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2024-11, Vol.130 (11), Article 794
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_3116320889
source Springer Nature
subjects Characterization and Evaluation of Materials
Circuit boards
Condensed Matter Physics
Machines
Manufacturing
Metamaterials
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Plasmons
Printed circuits
Processes
Surfaces and Interfaces
Thin Films
title EM metamaterials sensor based on close coupling of spoof localized surface plasmons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EM%20metamaterials%20sensor%20based%20on%20close%20coupling%20of%20spoof%20localized%20surface%20plasmons&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Li,%20Xian&rft.date=2024-11-01&rft.volume=130&rft.issue=11&rft.artnum=794&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-024-07968-9&rft_dat=%3Cproquest_cross%3E3116320889%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-eb4bce80ad54c6075463f0862dbfd1d5af21fe42682f33d6d99d20d2996348f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116320889&rft_id=info:pmid/&rfr_iscdi=true