Loading…
EM metamaterials sensor based on close coupling of spoof localized surface plasmons
Electromagnetic (EM) metamaterials, with their unparalleled ability to manipulate EM waves, hold significant potential in various fields, including telemetric sensing, which enables wireless measurement of strain and displacement. This paper explores a type of wireless sensor based on spoof localize...
Saved in:
Published in: | Applied physics. A, Materials science & processing Materials science & processing, 2024-11, Vol.130 (11), Article 794 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-eb4bce80ad54c6075463f0862dbfd1d5af21fe42682f33d6d99d20d2996348f73 |
container_end_page | |
container_issue | 11 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 130 |
creator | Li, Xian Feng, Jing-Wei Zhang, Zhongwen Xu, Zhao-Dong Jiang, Kai-Feng Soh, Chee-Kiong |
description | Electromagnetic (EM) metamaterials, with their unparalleled ability to manipulate EM waves, hold significant potential in various fields, including telemetric sensing, which enables wireless measurement of strain and displacement. This paper explores a type of wireless sensor based on spoof localized surface plasmons (SLSPs) that generate a resonant evanescent EM wave. When closely coupled, their transmission spectrum is highly sensitive to the distance between the resonators, facilitating near-field measurement of strain and deformation. The theoretical foundation for telemetric measurement using this type of metamaterials is discussed, and a series of tests were conducted for validation. The results indicate a sensitivity of 36 MHz/millimeter at an operating frequency of 4.3 GHz. Both sensors can also be fabricated using printed circuit board (PCB) techniques. |
doi_str_mv | 10.1007/s00339-024-07968-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3116320889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116320889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-eb4bce80ad54c6075463f0862dbfd1d5af21fe42682f33d6d99d20d2996348f73</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvCD1BZojaMH-vEJVotDwlEAdSW48cqqyQOdraAr8dLkOiYYqY59450ELqkcE0BqpsMwLkiwASBSsmaqCO0oIIzApLDMVqAEhWpuZKn6CznHZQRjC3Q6-YZ934yvZl8ak2XcfZDjgk3JnuH44BtF7PHNu7Hrh22OAacx1h2F63p2q8C5X0Kxno8dib3ccjn6CSUJn_xe5fo_W7ztn4gTy_3j-vbJ2IZwER8IxrrazBuJayEaiUkD1BL5prgqFuZwGjwgsmaBc6ddEo5Bo4pJbmoQ8WX6GruHVP82Ps86V3cp6G81JxSyRnUtSoUmymbYs7JBz2mtjfpU1PQB3l6lqeLPP0jTx9CfA7lAg9bn_6q_0l9A_hvcmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116320889</pqid></control><display><type>article</type><title>EM metamaterials sensor based on close coupling of spoof localized surface plasmons</title><source>Springer Nature</source><creator>Li, Xian ; Feng, Jing-Wei ; Zhang, Zhongwen ; Xu, Zhao-Dong ; Jiang, Kai-Feng ; Soh, Chee-Kiong</creator><creatorcontrib>Li, Xian ; Feng, Jing-Wei ; Zhang, Zhongwen ; Xu, Zhao-Dong ; Jiang, Kai-Feng ; Soh, Chee-Kiong</creatorcontrib><description>Electromagnetic (EM) metamaterials, with their unparalleled ability to manipulate EM waves, hold significant potential in various fields, including telemetric sensing, which enables wireless measurement of strain and displacement. This paper explores a type of wireless sensor based on spoof localized surface plasmons (SLSPs) that generate a resonant evanescent EM wave. When closely coupled, their transmission spectrum is highly sensitive to the distance between the resonators, facilitating near-field measurement of strain and deformation. The theoretical foundation for telemetric measurement using this type of metamaterials is discussed, and a series of tests were conducted for validation. The results indicate a sensitivity of 36 MHz/millimeter at an operating frequency of 4.3 GHz. Both sensors can also be fabricated using printed circuit board (PCB) techniques.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-024-07968-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Circuit boards ; Condensed Matter Physics ; Machines ; Manufacturing ; Metamaterials ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Plasmons ; Printed circuits ; Processes ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2024-11, Vol.130 (11), Article 794</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-eb4bce80ad54c6075463f0862dbfd1d5af21fe42682f33d6d99d20d2996348f73</cites><orcidid>0000-0002-2029-5876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Li, Xian</creatorcontrib><creatorcontrib>Feng, Jing-Wei</creatorcontrib><creatorcontrib>Zhang, Zhongwen</creatorcontrib><creatorcontrib>Xu, Zhao-Dong</creatorcontrib><creatorcontrib>Jiang, Kai-Feng</creatorcontrib><creatorcontrib>Soh, Chee-Kiong</creatorcontrib><title>EM metamaterials sensor based on close coupling of spoof localized surface plasmons</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Electromagnetic (EM) metamaterials, with their unparalleled ability to manipulate EM waves, hold significant potential in various fields, including telemetric sensing, which enables wireless measurement of strain and displacement. This paper explores a type of wireless sensor based on spoof localized surface plasmons (SLSPs) that generate a resonant evanescent EM wave. When closely coupled, their transmission spectrum is highly sensitive to the distance between the resonators, facilitating near-field measurement of strain and deformation. The theoretical foundation for telemetric measurement using this type of metamaterials is discussed, and a series of tests were conducted for validation. The results indicate a sensitivity of 36 MHz/millimeter at an operating frequency of 4.3 GHz. Both sensors can also be fabricated using printed circuit board (PCB) techniques.</description><subject>Characterization and Evaluation of Materials</subject><subject>Circuit boards</subject><subject>Condensed Matter Physics</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Metamaterials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasmons</subject><subject>Printed circuits</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvCD1BZojaMH-vEJVotDwlEAdSW48cqqyQOdraAr8dLkOiYYqY59450ELqkcE0BqpsMwLkiwASBSsmaqCO0oIIzApLDMVqAEhWpuZKn6CznHZQRjC3Q6-YZ934yvZl8ak2XcfZDjgk3JnuH44BtF7PHNu7Hrh22OAacx1h2F63p2q8C5X0Kxno8dib3ccjn6CSUJn_xe5fo_W7ztn4gTy_3j-vbJ2IZwER8IxrrazBuJayEaiUkD1BL5prgqFuZwGjwgsmaBc6ddEo5Bo4pJbmoQ8WX6GruHVP82Ps86V3cp6G81JxSyRnUtSoUmymbYs7JBz2mtjfpU1PQB3l6lqeLPP0jTx9CfA7lAg9bn_6q_0l9A_hvcmo</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Li, Xian</creator><creator>Feng, Jing-Wei</creator><creator>Zhang, Zhongwen</creator><creator>Xu, Zhao-Dong</creator><creator>Jiang, Kai-Feng</creator><creator>Soh, Chee-Kiong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2029-5876</orcidid></search><sort><creationdate>20241101</creationdate><title>EM metamaterials sensor based on close coupling of spoof localized surface plasmons</title><author>Li, Xian ; Feng, Jing-Wei ; Zhang, Zhongwen ; Xu, Zhao-Dong ; Jiang, Kai-Feng ; Soh, Chee-Kiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-eb4bce80ad54c6075463f0862dbfd1d5af21fe42682f33d6d99d20d2996348f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Circuit boards</topic><topic>Condensed Matter Physics</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Metamaterials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasmons</topic><topic>Printed circuits</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xian</creatorcontrib><creatorcontrib>Feng, Jing-Wei</creatorcontrib><creatorcontrib>Zhang, Zhongwen</creatorcontrib><creatorcontrib>Xu, Zhao-Dong</creatorcontrib><creatorcontrib>Jiang, Kai-Feng</creatorcontrib><creatorcontrib>Soh, Chee-Kiong</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xian</au><au>Feng, Jing-Wei</au><au>Zhang, Zhongwen</au><au>Xu, Zhao-Dong</au><au>Jiang, Kai-Feng</au><au>Soh, Chee-Kiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EM metamaterials sensor based on close coupling of spoof localized surface plasmons</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>130</volume><issue>11</issue><artnum>794</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Electromagnetic (EM) metamaterials, with their unparalleled ability to manipulate EM waves, hold significant potential in various fields, including telemetric sensing, which enables wireless measurement of strain and displacement. This paper explores a type of wireless sensor based on spoof localized surface plasmons (SLSPs) that generate a resonant evanescent EM wave. When closely coupled, their transmission spectrum is highly sensitive to the distance between the resonators, facilitating near-field measurement of strain and deformation. The theoretical foundation for telemetric measurement using this type of metamaterials is discussed, and a series of tests were conducted for validation. The results indicate a sensitivity of 36 MHz/millimeter at an operating frequency of 4.3 GHz. Both sensors can also be fabricated using printed circuit board (PCB) techniques.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-024-07968-9</doi><orcidid>https://orcid.org/0000-0002-2029-5876</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2024-11, Vol.130 (11), Article 794 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_3116320889 |
source | Springer Nature |
subjects | Characterization and Evaluation of Materials Circuit boards Condensed Matter Physics Machines Manufacturing Metamaterials Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Plasmons Printed circuits Processes Surfaces and Interfaces Thin Films |
title | EM metamaterials sensor based on close coupling of spoof localized surface plasmons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EM%20metamaterials%20sensor%20based%20on%20close%20coupling%20of%20spoof%20localized%20surface%20plasmons&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Li,%20Xian&rft.date=2024-11-01&rft.volume=130&rft.issue=11&rft.artnum=794&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-024-07968-9&rft_dat=%3Cproquest_cross%3E3116320889%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-eb4bce80ad54c6075463f0862dbfd1d5af21fe42682f33d6d99d20d2996348f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116320889&rft_id=info:pmid/&rfr_iscdi=true |