Loading…
Probing Coronal Mass Ejection Inclination Effects with EUHFORIA
Coronal mass ejections (CMEs) are complex magnetized plasma structures in which the magnetic field spirals around a central axis, forming what is known as a flux rope (FR). The central FR axis can be oriented at any angle with respect to the ecliptic. Throughout its journey, a CME will encounter int...
Saved in:
Published in: | The Astrophysical journal 2024-10, Vol.974 (2), p.203 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c257t-8c7983c7536abd0e3b23882697661fbb7e855916793620cf62ded4dcd6c27b603 |
container_end_page | |
container_issue | 2 |
container_start_page | 203 |
container_title | The Astrophysical journal |
container_volume | 974 |
creator | Martinić, Karmen Asvestari, Eleanna Dumbović, Mateja Rindlisbacher, Tobias Temmer, Manuela Vršnak, Bojan |
description | Coronal mass ejections (CMEs) are complex magnetized plasma structures in which the magnetic field spirals around a central axis, forming what is known as a flux rope (FR). The central FR axis can be oriented at any angle with respect to the ecliptic. Throughout its journey, a CME will encounter interplanetary magnetic fields and solar winds that are neither homogeneous nor isotropic. Consequently, CMEs with different orientations will encounter different ambient medium conditions and, thus, the interaction of a CME with its surrounding environment will vary depending on the orientation of its FR axis, among other factors. This study aims to understand the effect of inclination on CME propagation. We performed simulations with the EUHFORIA 3D magnetohydrodynamic model. This study focuses on two CMEs modeled as spheromaks with nearly identical properties, differing only by their inclination. We show the effects of CME orientation on sheath evolution, MHD drag, and nonradial flows by analyzing the model data from a swarm of 81 virtual spacecraft scattered across the inner heliospheric. We have found that the sheath duration increases with radial distance from the Sun and that the rate of increase is greater on the flanks of the CME. Nonradial flows within the studied sheath region appear larger outside the ecliptic plane, indicating a “sliding” of the interplanetary magnetic field in the out-of-ecliptic plane. We found that the calculated drag parameter does not remain constant with radial distance and that the inclination dependence of the drag parameter cannot be resolved with our numerical setup. |
doi_str_mv | 10.3847/1538-4357/ad7392 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3116669745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4d6a83d8eafb4d8ea4ea8da963caa3a0</doaj_id><sourcerecordid>3116669745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-8c7983c7536abd0e3b23882697661fbb7e855916793620cf62ded4dcd6c27b603</originalsourceid><addsrcrecordid>eNp1UEFLwzAUDqLgnN49FrxalyZtkp5kjM4VJhNx4C28Julsqc1MOsR_b7uKnjy99z6-73vvfQhdR_iOipjPooSKMKYJn4HmNCUnaPILnaIJxjgOGeWv5-jC-3oYSZpO0P2Ts0XV7oKFdbaFJngE74OsNqqrbBvkrWqqFo59VpY96oPPqnsLsu1quXnO55forITGm6ufOkXbZfayWIXrzUO-mK9DRRLehULxVFDFE8qg0NjQglAhCEs5Y1FZFNyIJEkjxlPKCFYlI9roWCvNFOEFw3SK8tFXW6jl3lXv4L6khUoeAet2ElxXqcbIWDMQVAsDZREPJTYgNKSMKgAKg9fN6LV39uNgfCdre3D9817SKGKsvypOehYeWcpZ750pf7dGWA6RyyFfOeQrx8h7ye0oqez-z_Nf-jcX6YAL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116669745</pqid></control><display><type>article</type><title>Probing Coronal Mass Ejection Inclination Effects with EUHFORIA</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Martinić, Karmen ; Asvestari, Eleanna ; Dumbović, Mateja ; Rindlisbacher, Tobias ; Temmer, Manuela ; Vršnak, Bojan</creator><creatorcontrib>Martinić, Karmen ; Asvestari, Eleanna ; Dumbović, Mateja ; Rindlisbacher, Tobias ; Temmer, Manuela ; Vršnak, Bojan</creatorcontrib><description>Coronal mass ejections (CMEs) are complex magnetized plasma structures in which the magnetic field spirals around a central axis, forming what is known as a flux rope (FR). The central FR axis can be oriented at any angle with respect to the ecliptic. Throughout its journey, a CME will encounter interplanetary magnetic fields and solar winds that are neither homogeneous nor isotropic. Consequently, CMEs with different orientations will encounter different ambient medium conditions and, thus, the interaction of a CME with its surrounding environment will vary depending on the orientation of its FR axis, among other factors. This study aims to understand the effect of inclination on CME propagation. We performed simulations with the EUHFORIA 3D magnetohydrodynamic model. This study focuses on two CMEs modeled as spheromaks with nearly identical properties, differing only by their inclination. We show the effects of CME orientation on sheath evolution, MHD drag, and nonradial flows by analyzing the model data from a swarm of 81 virtual spacecraft scattered across the inner heliospheric. We have found that the sheath duration increases with radial distance from the Sun and that the rate of increase is greater on the flanks of the CME. Nonradial flows within the studied sheath region appear larger outside the ecliptic plane, indicating a “sliding” of the interplanetary magnetic field in the out-of-ecliptic plane. We found that the calculated drag parameter does not remain constant with radial distance and that the inclination dependence of the drag parameter cannot be resolved with our numerical setup.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad7392</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Coronal mass ejection ; Drag ; Ecliptic ; Heliosphere ; Inclination ; Interplanetary magnetic field ; Magnetic fields ; Magnetic flux ; Magnetic properties ; Magnetohydrodynamical simulations ; Orientation effects ; Parameters ; Sheaths ; Solar coronal mass ejections ; Solar magnetic field ; Solar physics ; Solar wind ; Spacecraft</subject><ispartof>The Astrophysical journal, 2024-10, Vol.974 (2), p.203</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-8c7983c7536abd0e3b23882697661fbb7e855916793620cf62ded4dcd6c27b603</cites><orcidid>0000-0002-6998-7224 ; 0000-0003-4867-7558 ; 0000-0003-2617-4319 ; 0000-0002-8680-8267 ; 0000-0002-0248-4681 ; 0000-0002-9866-0458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Martinić, Karmen</creatorcontrib><creatorcontrib>Asvestari, Eleanna</creatorcontrib><creatorcontrib>Dumbović, Mateja</creatorcontrib><creatorcontrib>Rindlisbacher, Tobias</creatorcontrib><creatorcontrib>Temmer, Manuela</creatorcontrib><creatorcontrib>Vršnak, Bojan</creatorcontrib><title>Probing Coronal Mass Ejection Inclination Effects with EUHFORIA</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Coronal mass ejections (CMEs) are complex magnetized plasma structures in which the magnetic field spirals around a central axis, forming what is known as a flux rope (FR). The central FR axis can be oriented at any angle with respect to the ecliptic. Throughout its journey, a CME will encounter interplanetary magnetic fields and solar winds that are neither homogeneous nor isotropic. Consequently, CMEs with different orientations will encounter different ambient medium conditions and, thus, the interaction of a CME with its surrounding environment will vary depending on the orientation of its FR axis, among other factors. This study aims to understand the effect of inclination on CME propagation. We performed simulations with the EUHFORIA 3D magnetohydrodynamic model. This study focuses on two CMEs modeled as spheromaks with nearly identical properties, differing only by their inclination. We show the effects of CME orientation on sheath evolution, MHD drag, and nonradial flows by analyzing the model data from a swarm of 81 virtual spacecraft scattered across the inner heliospheric. We have found that the sheath duration increases with radial distance from the Sun and that the rate of increase is greater on the flanks of the CME. Nonradial flows within the studied sheath region appear larger outside the ecliptic plane, indicating a “sliding” of the interplanetary magnetic field in the out-of-ecliptic plane. We found that the calculated drag parameter does not remain constant with radial distance and that the inclination dependence of the drag parameter cannot be resolved with our numerical setup.</description><subject>Coronal mass ejection</subject><subject>Drag</subject><subject>Ecliptic</subject><subject>Heliosphere</subject><subject>Inclination</subject><subject>Interplanetary magnetic field</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic properties</subject><subject>Magnetohydrodynamical simulations</subject><subject>Orientation effects</subject><subject>Parameters</subject><subject>Sheaths</subject><subject>Solar coronal mass ejections</subject><subject>Solar magnetic field</subject><subject>Solar physics</subject><subject>Solar wind</subject><subject>Spacecraft</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1UEFLwzAUDqLgnN49FrxalyZtkp5kjM4VJhNx4C28Julsqc1MOsR_b7uKnjy99z6-73vvfQhdR_iOipjPooSKMKYJn4HmNCUnaPILnaIJxjgOGeWv5-jC-3oYSZpO0P2Ts0XV7oKFdbaFJngE74OsNqqrbBvkrWqqFo59VpY96oPPqnsLsu1quXnO55forITGm6ufOkXbZfayWIXrzUO-mK9DRRLehULxVFDFE8qg0NjQglAhCEs5Y1FZFNyIJEkjxlPKCFYlI9roWCvNFOEFw3SK8tFXW6jl3lXv4L6khUoeAet2ElxXqcbIWDMQVAsDZREPJTYgNKSMKgAKg9fN6LV39uNgfCdre3D9817SKGKsvypOehYeWcpZ750pf7dGWA6RyyFfOeQrx8h7ye0oqez-z_Nf-jcX6YAL</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Martinić, Karmen</creator><creator>Asvestari, Eleanna</creator><creator>Dumbović, Mateja</creator><creator>Rindlisbacher, Tobias</creator><creator>Temmer, Manuela</creator><creator>Vršnak, Bojan</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6998-7224</orcidid><orcidid>https://orcid.org/0000-0003-4867-7558</orcidid><orcidid>https://orcid.org/0000-0003-2617-4319</orcidid><orcidid>https://orcid.org/0000-0002-8680-8267</orcidid><orcidid>https://orcid.org/0000-0002-0248-4681</orcidid><orcidid>https://orcid.org/0000-0002-9866-0458</orcidid></search><sort><creationdate>20241001</creationdate><title>Probing Coronal Mass Ejection Inclination Effects with EUHFORIA</title><author>Martinić, Karmen ; Asvestari, Eleanna ; Dumbović, Mateja ; Rindlisbacher, Tobias ; Temmer, Manuela ; Vršnak, Bojan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-8c7983c7536abd0e3b23882697661fbb7e855916793620cf62ded4dcd6c27b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coronal mass ejection</topic><topic>Drag</topic><topic>Ecliptic</topic><topic>Heliosphere</topic><topic>Inclination</topic><topic>Interplanetary magnetic field</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic properties</topic><topic>Magnetohydrodynamical simulations</topic><topic>Orientation effects</topic><topic>Parameters</topic><topic>Sheaths</topic><topic>Solar coronal mass ejections</topic><topic>Solar magnetic field</topic><topic>Solar physics</topic><topic>Solar wind</topic><topic>Spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinić, Karmen</creatorcontrib><creatorcontrib>Asvestari, Eleanna</creatorcontrib><creatorcontrib>Dumbović, Mateja</creatorcontrib><creatorcontrib>Rindlisbacher, Tobias</creatorcontrib><creatorcontrib>Temmer, Manuela</creatorcontrib><creatorcontrib>Vršnak, Bojan</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinić, Karmen</au><au>Asvestari, Eleanna</au><au>Dumbović, Mateja</au><au>Rindlisbacher, Tobias</au><au>Temmer, Manuela</au><au>Vršnak, Bojan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Coronal Mass Ejection Inclination Effects with EUHFORIA</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>974</volume><issue>2</issue><spage>203</spage><pages>203-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Coronal mass ejections (CMEs) are complex magnetized plasma structures in which the magnetic field spirals around a central axis, forming what is known as a flux rope (FR). The central FR axis can be oriented at any angle with respect to the ecliptic. Throughout its journey, a CME will encounter interplanetary magnetic fields and solar winds that are neither homogeneous nor isotropic. Consequently, CMEs with different orientations will encounter different ambient medium conditions and, thus, the interaction of a CME with its surrounding environment will vary depending on the orientation of its FR axis, among other factors. This study aims to understand the effect of inclination on CME propagation. We performed simulations with the EUHFORIA 3D magnetohydrodynamic model. This study focuses on two CMEs modeled as spheromaks with nearly identical properties, differing only by their inclination. We show the effects of CME orientation on sheath evolution, MHD drag, and nonradial flows by analyzing the model data from a swarm of 81 virtual spacecraft scattered across the inner heliospheric. We have found that the sheath duration increases with radial distance from the Sun and that the rate of increase is greater on the flanks of the CME. Nonradial flows within the studied sheath region appear larger outside the ecliptic plane, indicating a “sliding” of the interplanetary magnetic field in the out-of-ecliptic plane. We found that the calculated drag parameter does not remain constant with radial distance and that the inclination dependence of the drag parameter cannot be resolved with our numerical setup.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad7392</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6998-7224</orcidid><orcidid>https://orcid.org/0000-0003-4867-7558</orcidid><orcidid>https://orcid.org/0000-0003-2617-4319</orcidid><orcidid>https://orcid.org/0000-0002-8680-8267</orcidid><orcidid>https://orcid.org/0000-0002-0248-4681</orcidid><orcidid>https://orcid.org/0000-0002-9866-0458</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2024-10, Vol.974 (2), p.203 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_3116669745 |
source | Free E-Journal (出版社公開部分のみ) |
subjects | Coronal mass ejection Drag Ecliptic Heliosphere Inclination Interplanetary magnetic field Magnetic fields Magnetic flux Magnetic properties Magnetohydrodynamical simulations Orientation effects Parameters Sheaths Solar coronal mass ejections Solar magnetic field Solar physics Solar wind Spacecraft |
title | Probing Coronal Mass Ejection Inclination Effects with EUHFORIA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Coronal%20Mass%20Ejection%20Inclination%20Effects%20with%20EUHFORIA&rft.jtitle=The%20Astrophysical%20journal&rft.au=Martini%C4%87,%20Karmen&rft.date=2024-10-01&rft.volume=974&rft.issue=2&rft.spage=203&rft.pages=203-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad7392&rft_dat=%3Cproquest_doaj_%3E3116669745%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-8c7983c7536abd0e3b23882697661fbb7e855916793620cf62ded4dcd6c27b603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116669745&rft_id=info:pmid/&rfr_iscdi=true |