Loading…

slick: Modeling a Universe of Molecular Line Luminosities in Hydrodynamical Simulations

We present slick (the Scalable Line Intensity Computation Kit), a software package that calculates realistic CO, [C i ], and [C ii ] luminosities for clouds and galaxies formed in hydrodynamic simulations. Built on the radiative transfer code despotic , slick computes the thermal, radiative, and sta...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2024-10, Vol.974 (2), p.197
Main Authors: Garcia, Karolina, Narayanan, Desika, Popping, Gergö, Anirudh, R., Sutherland, Sagan, Kaasinen, Melanie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c257t-86c845edcb3bdb6de770ce2b7073a07e6ea15ceaae4f3f11fd39df2d23a7f893
container_end_page
container_issue 2
container_start_page 197
container_title The Astrophysical journal
container_volume 974
creator Garcia, Karolina
Narayanan, Desika
Popping, Gergö
Anirudh, R.
Sutherland, Sagan
Kaasinen, Melanie
description We present slick (the Scalable Line Intensity Computation Kit), a software package that calculates realistic CO, [C i ], and [C ii ] luminosities for clouds and galaxies formed in hydrodynamic simulations. Built on the radiative transfer code despotic , slick computes the thermal, radiative, and statistical equilibrium in concentric zones of model clouds, based on their physical properties and individual environments. We validate our results by applying slick to the high-resolution run of the Simba simulations, testing the derived luminosities against empirical and theoretical/analytic relations. To simulate the line emission from a universe of emitting clouds, we have incorporated random forest machine learning (ML) methods into our approach, allowing us to predict cosmologically evolving properties of CO, [C i ], and [C ii ] emission from galaxies such as luminosity functions. We tested this model in 100,000 gas particles, and 2500 galaxies, reaching an average accuracy of ∼99.8% for all lines. Finally, we present the first model light cones created with realistic and ML-predicted CO, [C i ], and [C ii ] luminosities in cosmological hydrodynamical simulations, from z = 0 to z = 10.
doi_str_mv 10.3847/1538-4357/ad642c
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3116669849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a2595cf3524c4a60842a94bf538528eb</doaj_id><sourcerecordid>3116669849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-86c845edcb3bdb6de770ce2b7073a07e6ea15ceaae4f3f11fd39df2d23a7f893</originalsourceid><addsrcrecordid>eNp1UU1P3DAUtKpW6pb23qMlrg04_ky4IdQWpEUcCoKb9WI_Iy_ZeGtnK-2_JyGInjg9vdHMvKcZQr7X7EQ00pzWSjSVFMqcgteSuw9k9QZ9JCvGmKy0MA-fyZdSNvPK23ZF7ksf3dMZvU4e-zg8UqB3Q_yHuSBNYYJ7dPseMl3HAel6v41DKnGMWGgc6OXB5-QPA2yjg57-iduJO8Y0lK_kU4C-4LfXeURuf_28vbis1je_ry7O15XjyoxVo10jFXrXic532qMxzCHvDDMCmEGNUCuHACiDCHUdvGh94J4LMKFpxRG5Wmx9go3d5biFfLAJon0BUn60kMfoerTAVatcEIpLJ0GzRnJoZRemkBRvsJu8jhevXU5_91hGu0n7PEzfW1HXWuu2kfNFtrBcTqVkDG9Xa2bnJuwcu51jt0sTk-THIolp99_zXfozI3GK0A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116669849</pqid></control><display><type>article</type><title>slick: Modeling a Universe of Molecular Line Luminosities in Hydrodynamical Simulations</title><source>EZB Electronic Journals Library</source><creator>Garcia, Karolina ; Narayanan, Desika ; Popping, Gergö ; Anirudh, R. ; Sutherland, Sagan ; Kaasinen, Melanie</creator><creatorcontrib>Garcia, Karolina ; Narayanan, Desika ; Popping, Gergö ; Anirudh, R. ; Sutherland, Sagan ; Kaasinen, Melanie</creatorcontrib><description>We present slick (the Scalable Line Intensity Computation Kit), a software package that calculates realistic CO, [C i ], and [C ii ] luminosities for clouds and galaxies formed in hydrodynamic simulations. Built on the radiative transfer code despotic , slick computes the thermal, radiative, and statistical equilibrium in concentric zones of model clouds, based on their physical properties and individual environments. We validate our results by applying slick to the high-resolution run of the Simba simulations, testing the derived luminosities against empirical and theoretical/analytic relations. To simulate the line emission from a universe of emitting clouds, we have incorporated random forest machine learning (ML) methods into our approach, allowing us to predict cosmologically evolving properties of CO, [C i ], and [C ii ] emission from galaxies such as luminosity functions. We tested this model in 100,000 gas particles, and 2500 galaxies, reaching an average accuracy of ∼99.8% for all lines. Finally, we present the first model light cones created with realistic and ML-predicted CO, [C i ], and [C ii ] luminosities in cosmological hydrodynamical simulations, from z = 0 to z = 10.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad642c</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrostatistics techniques ; Building codes ; Computational methods ; Cosmological evolution ; Cosmology ; Emission analysis ; Emissions ; Galaxies ; Galaxy evolution ; Galaxy luminosities ; Interstellar clouds ; Interstellar line emission ; Luminosity ; Machine learning ; Molecular clouds ; Physical properties ; Radiative transfer ; Simulation ; Universe</subject><ispartof>The Astrophysical journal, 2024-10, Vol.974 (2), p.197</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-86c845edcb3bdb6de770ce2b7073a07e6ea15ceaae4f3f11fd39df2d23a7f893</cites><orcidid>0000-0001-7145-549X ; 0000-0002-7064-4309 ; 0000-0002-3071-3365 ; 0009-0009-3195-3211 ; 0000-0003-1151-4659 ; 0000-0002-1173-2579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Garcia, Karolina</creatorcontrib><creatorcontrib>Narayanan, Desika</creatorcontrib><creatorcontrib>Popping, Gergö</creatorcontrib><creatorcontrib>Anirudh, R.</creatorcontrib><creatorcontrib>Sutherland, Sagan</creatorcontrib><creatorcontrib>Kaasinen, Melanie</creatorcontrib><title>slick: Modeling a Universe of Molecular Line Luminosities in Hydrodynamical Simulations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present slick (the Scalable Line Intensity Computation Kit), a software package that calculates realistic CO, [C i ], and [C ii ] luminosities for clouds and galaxies formed in hydrodynamic simulations. Built on the radiative transfer code despotic , slick computes the thermal, radiative, and statistical equilibrium in concentric zones of model clouds, based on their physical properties and individual environments. We validate our results by applying slick to the high-resolution run of the Simba simulations, testing the derived luminosities against empirical and theoretical/analytic relations. To simulate the line emission from a universe of emitting clouds, we have incorporated random forest machine learning (ML) methods into our approach, allowing us to predict cosmologically evolving properties of CO, [C i ], and [C ii ] emission from galaxies such as luminosity functions. We tested this model in 100,000 gas particles, and 2500 galaxies, reaching an average accuracy of ∼99.8% for all lines. Finally, we present the first model light cones created with realistic and ML-predicted CO, [C i ], and [C ii ] luminosities in cosmological hydrodynamical simulations, from z = 0 to z = 10.</description><subject>Astrostatistics techniques</subject><subject>Building codes</subject><subject>Computational methods</subject><subject>Cosmological evolution</subject><subject>Cosmology</subject><subject>Emission analysis</subject><subject>Emissions</subject><subject>Galaxies</subject><subject>Galaxy evolution</subject><subject>Galaxy luminosities</subject><subject>Interstellar clouds</subject><subject>Interstellar line emission</subject><subject>Luminosity</subject><subject>Machine learning</subject><subject>Molecular clouds</subject><subject>Physical properties</subject><subject>Radiative transfer</subject><subject>Simulation</subject><subject>Universe</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1UU1P3DAUtKpW6pb23qMlrg04_ky4IdQWpEUcCoKb9WI_Iy_ZeGtnK-2_JyGInjg9vdHMvKcZQr7X7EQ00pzWSjSVFMqcgteSuw9k9QZ9JCvGmKy0MA-fyZdSNvPK23ZF7ksf3dMZvU4e-zg8UqB3Q_yHuSBNYYJ7dPseMl3HAel6v41DKnGMWGgc6OXB5-QPA2yjg57-iduJO8Y0lK_kU4C-4LfXeURuf_28vbis1je_ry7O15XjyoxVo10jFXrXic532qMxzCHvDDMCmEGNUCuHACiDCHUdvGh94J4LMKFpxRG5Wmx9go3d5biFfLAJon0BUn60kMfoerTAVatcEIpLJ0GzRnJoZRemkBRvsJu8jhevXU5_91hGu0n7PEzfW1HXWuu2kfNFtrBcTqVkDG9Xa2bnJuwcu51jt0sTk-THIolp99_zXfozI3GK0A</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Garcia, Karolina</creator><creator>Narayanan, Desika</creator><creator>Popping, Gergö</creator><creator>Anirudh, R.</creator><creator>Sutherland, Sagan</creator><creator>Kaasinen, Melanie</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7145-549X</orcidid><orcidid>https://orcid.org/0000-0002-7064-4309</orcidid><orcidid>https://orcid.org/0000-0002-3071-3365</orcidid><orcidid>https://orcid.org/0009-0009-3195-3211</orcidid><orcidid>https://orcid.org/0000-0003-1151-4659</orcidid><orcidid>https://orcid.org/0000-0002-1173-2579</orcidid></search><sort><creationdate>20241001</creationdate><title>slick: Modeling a Universe of Molecular Line Luminosities in Hydrodynamical Simulations</title><author>Garcia, Karolina ; Narayanan, Desika ; Popping, Gergö ; Anirudh, R. ; Sutherland, Sagan ; Kaasinen, Melanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-86c845edcb3bdb6de770ce2b7073a07e6ea15ceaae4f3f11fd39df2d23a7f893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrostatistics techniques</topic><topic>Building codes</topic><topic>Computational methods</topic><topic>Cosmological evolution</topic><topic>Cosmology</topic><topic>Emission analysis</topic><topic>Emissions</topic><topic>Galaxies</topic><topic>Galaxy evolution</topic><topic>Galaxy luminosities</topic><topic>Interstellar clouds</topic><topic>Interstellar line emission</topic><topic>Luminosity</topic><topic>Machine learning</topic><topic>Molecular clouds</topic><topic>Physical properties</topic><topic>Radiative transfer</topic><topic>Simulation</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Karolina</creatorcontrib><creatorcontrib>Narayanan, Desika</creatorcontrib><creatorcontrib>Popping, Gergö</creatorcontrib><creatorcontrib>Anirudh, R.</creatorcontrib><creatorcontrib>Sutherland, Sagan</creatorcontrib><creatorcontrib>Kaasinen, Melanie</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Karolina</au><au>Narayanan, Desika</au><au>Popping, Gergö</au><au>Anirudh, R.</au><au>Sutherland, Sagan</au><au>Kaasinen, Melanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>slick: Modeling a Universe of Molecular Line Luminosities in Hydrodynamical Simulations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>974</volume><issue>2</issue><spage>197</spage><pages>197-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present slick (the Scalable Line Intensity Computation Kit), a software package that calculates realistic CO, [C i ], and [C ii ] luminosities for clouds and galaxies formed in hydrodynamic simulations. Built on the radiative transfer code despotic , slick computes the thermal, radiative, and statistical equilibrium in concentric zones of model clouds, based on their physical properties and individual environments. We validate our results by applying slick to the high-resolution run of the Simba simulations, testing the derived luminosities against empirical and theoretical/analytic relations. To simulate the line emission from a universe of emitting clouds, we have incorporated random forest machine learning (ML) methods into our approach, allowing us to predict cosmologically evolving properties of CO, [C i ], and [C ii ] emission from galaxies such as luminosity functions. We tested this model in 100,000 gas particles, and 2500 galaxies, reaching an average accuracy of ∼99.8% for all lines. Finally, we present the first model light cones created with realistic and ML-predicted CO, [C i ], and [C ii ] luminosities in cosmological hydrodynamical simulations, from z = 0 to z = 10.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad642c</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7145-549X</orcidid><orcidid>https://orcid.org/0000-0002-7064-4309</orcidid><orcidid>https://orcid.org/0000-0002-3071-3365</orcidid><orcidid>https://orcid.org/0009-0009-3195-3211</orcidid><orcidid>https://orcid.org/0000-0003-1151-4659</orcidid><orcidid>https://orcid.org/0000-0002-1173-2579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2024-10, Vol.974 (2), p.197
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_3116669849
source EZB Electronic Journals Library
subjects Astrostatistics techniques
Building codes
Computational methods
Cosmological evolution
Cosmology
Emission analysis
Emissions
Galaxies
Galaxy evolution
Galaxy luminosities
Interstellar clouds
Interstellar line emission
Luminosity
Machine learning
Molecular clouds
Physical properties
Radiative transfer
Simulation
Universe
title slick: Modeling a Universe of Molecular Line Luminosities in Hydrodynamical Simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=slick:%20Modeling%20a%20Universe%20of%20Molecular%20Line%20Luminosities%20in%20Hydrodynamical%20Simulations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Garcia,%20Karolina&rft.date=2024-10-01&rft.volume=974&rft.issue=2&rft.spage=197&rft.pages=197-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad642c&rft_dat=%3Cproquest_doaj_%3E3116669849%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-86c845edcb3bdb6de770ce2b7073a07e6ea15ceaae4f3f11fd39df2d23a7f893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116669849&rft_id=info:pmid/&rfr_iscdi=true