Loading…

Air Pollution in the Port City of Lithuania: Characteristics of the Distribution of Nitrogen Dioxide and Solid Particles When Assessing the Demographic Distribution of the Population

This research addresses a gap in localized air quality assessments by measuring pollution levels in Klaipeda, a Baltic port city, using passive solid particle collectors and nitrogen dioxide (NO2) diffusion tubes. Passive sampling techniques were employed due to their cost-effectiveness and ease of...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2024-10, Vol.16 (19), p.8413
Main Authors: Andriulė, Aistė, Vasiliauskienė, Erika, Rapalis, Paulius, Dailidienė, Inga
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This research addresses a gap in localized air quality assessments by measuring pollution levels in Klaipeda, a Baltic port city, using passive solid particle collectors and nitrogen dioxide (NO2) diffusion tubes. Passive sampling techniques were employed due to their cost-effectiveness and ease of deployment, allowing for practical monitoring over short-term periods. By targeting diverse functional zones, this study aims to provide a comprehensive analysis of air pollution patterns and seasonal variations in the region. Air pollution, primarily from NO2 and particulate matter (PM), poses significant risks to public health, especially in densely populated urban areas. Air quality was assessed by measuring total suspended particulates (TSP) and NO2 concentrations across 19 strategically chosen sites, covering key functional zones, such as industrial areas, green spaces, residential neighborhoods, transport hubs, and the port. Results show elevated pollution levels near major roads and the port area, likely driven by heavy traffic, industrial emissions, and port activities. These patterns correlate with areas of higher population density, highlighting the intersection of air quality challenges with human health risks in urbanized zones. Seasonal data reveal a notable peak in NO2 concentrations during winter, likely due to increased heating demand and reduced atmospheric dispersion. These findings suggest that air quality management strategies should be adaptive to seasonal fluctuations, particularly by addressing emissions from heating sources in colder months. The study underscores the necessity of integrating sustainable urban planning with targeted air quality interventions. Expanding green spaces, enhancing traffic regulation, and establishing protective zones near industrial areas are critical strategies for mitigating pollution. These insights are essential for guiding both urban development and public health policies in Klaipeda and other coastal cities facing similar environmental challenges.
ISSN:2071-1050
2071-1050
DOI:10.3390/su16198413