Loading…

TULIP: Token-length Upgraded CLIP

We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent w...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Najdenkoska, Ivona, Mohammad Mahdi Derakhshani, Asano, Yuki M, Nanne van Noord, Worring, Marcel, Snoek, Cees G M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Najdenkoska, Ivona
Mohammad Mahdi Derakhshani
Asano, Yuki M
Nanne van Noord
Worring, Marcel
Snoek, Cees G M
description We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent work has attempted to overcome this limit, their proposed approaches struggle to model token relationships over longer distances and simply extend to a fixed new token length. Instead, we propose a generalizable method, named TULIP, able to upgrade the token length to any length for CLIP-like models. We do so by improving the architecture with relative position encodings, followed by a training procedure that (i) distills the original CLIP text encoder into an encoder with relative position encodings and (ii) enhances the model for aligning longer captions with images. By effectively encoding captions longer than the default 77 tokens, our model outperforms baselines on cross-modal tasks such as retrieval and text-to-image generation.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3116753127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116753127</sourcerecordid><originalsourceid>FETCH-proquest_journals_31167531273</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDAn18QywUgjJz07N081JzUsvyVAILUgvSkxJTVFwBsrxMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8saGhmbmpsaGRuTFxqgCZUywa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116753127</pqid></control><display><type>article</type><title>TULIP: Token-length Upgraded CLIP</title><source>Publicly Available Content (ProQuest)</source><creator>Najdenkoska, Ivona ; Mohammad Mahdi Derakhshani ; Asano, Yuki M ; Nanne van Noord ; Worring, Marcel ; Snoek, Cees G M</creator><creatorcontrib>Najdenkoska, Ivona ; Mohammad Mahdi Derakhshani ; Asano, Yuki M ; Nanne van Noord ; Worring, Marcel ; Snoek, Cees G M</creatorcontrib><description>We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent work has attempted to overcome this limit, their proposed approaches struggle to model token relationships over longer distances and simply extend to a fixed new token length. Instead, we propose a generalizable method, named TULIP, able to upgrade the token length to any length for CLIP-like models. We do so by improving the architecture with relative position encodings, followed by a training procedure that (i) distills the original CLIP text encoder into an encoder with relative position encodings and (ii) enhances the model for aligning longer captions with images. By effectively encoding captions longer than the default 77 tokens, our model outperforms baselines on cross-modal tasks such as retrieval and text-to-image generation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coders ; Image processing</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3116753127?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Najdenkoska, Ivona</creatorcontrib><creatorcontrib>Mohammad Mahdi Derakhshani</creatorcontrib><creatorcontrib>Asano, Yuki M</creatorcontrib><creatorcontrib>Nanne van Noord</creatorcontrib><creatorcontrib>Worring, Marcel</creatorcontrib><creatorcontrib>Snoek, Cees G M</creatorcontrib><title>TULIP: Token-length Upgraded CLIP</title><title>arXiv.org</title><description>We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent work has attempted to overcome this limit, their proposed approaches struggle to model token relationships over longer distances and simply extend to a fixed new token length. Instead, we propose a generalizable method, named TULIP, able to upgrade the token length to any length for CLIP-like models. We do so by improving the architecture with relative position encodings, followed by a training procedure that (i) distills the original CLIP text encoder into an encoder with relative position encodings and (ii) enhances the model for aligning longer captions with images. By effectively encoding captions longer than the default 77 tokens, our model outperforms baselines on cross-modal tasks such as retrieval and text-to-image generation.</description><subject>Coders</subject><subject>Image processing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDAn18QywUgjJz07N081JzUsvyVAILUgvSkxJTVFwBsrxMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8saGhmbmpsaGRuTFxqgCZUywa</recordid><startdate>20241013</startdate><enddate>20241013</enddate><creator>Najdenkoska, Ivona</creator><creator>Mohammad Mahdi Derakhshani</creator><creator>Asano, Yuki M</creator><creator>Nanne van Noord</creator><creator>Worring, Marcel</creator><creator>Snoek, Cees G M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241013</creationdate><title>TULIP: Token-length Upgraded CLIP</title><author>Najdenkoska, Ivona ; Mohammad Mahdi Derakhshani ; Asano, Yuki M ; Nanne van Noord ; Worring, Marcel ; Snoek, Cees G M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31167531273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coders</topic><topic>Image processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Najdenkoska, Ivona</creatorcontrib><creatorcontrib>Mohammad Mahdi Derakhshani</creatorcontrib><creatorcontrib>Asano, Yuki M</creatorcontrib><creatorcontrib>Nanne van Noord</creatorcontrib><creatorcontrib>Worring, Marcel</creatorcontrib><creatorcontrib>Snoek, Cees G M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najdenkoska, Ivona</au><au>Mohammad Mahdi Derakhshani</au><au>Asano, Yuki M</au><au>Nanne van Noord</au><au>Worring, Marcel</au><au>Snoek, Cees G M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TULIP: Token-length Upgraded CLIP</atitle><jtitle>arXiv.org</jtitle><date>2024-10-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent work has attempted to overcome this limit, their proposed approaches struggle to model token relationships over longer distances and simply extend to a fixed new token length. Instead, we propose a generalizable method, named TULIP, able to upgrade the token length to any length for CLIP-like models. We do so by improving the architecture with relative position encodings, followed by a training procedure that (i) distills the original CLIP text encoder into an encoder with relative position encodings and (ii) enhances the model for aligning longer captions with images. By effectively encoding captions longer than the default 77 tokens, our model outperforms baselines on cross-modal tasks such as retrieval and text-to-image generation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3116753127
source Publicly Available Content (ProQuest)
subjects Coders
Image processing
title TULIP: Token-length Upgraded CLIP
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TULIP:%20Token-length%20Upgraded%20CLIP&rft.jtitle=arXiv.org&rft.au=Najdenkoska,%20Ivona&rft.date=2024-10-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3116753127%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31167531273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116753127&rft_id=info:pmid/&rfr_iscdi=true