Loading…
TULIP: Token-length Upgraded CLIP
We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent w...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Najdenkoska, Ivona Mohammad Mahdi Derakhshani Asano, Yuki M Nanne van Noord Worring, Marcel Snoek, Cees G M |
description | We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent work has attempted to overcome this limit, their proposed approaches struggle to model token relationships over longer distances and simply extend to a fixed new token length. Instead, we propose a generalizable method, named TULIP, able to upgrade the token length to any length for CLIP-like models. We do so by improving the architecture with relative position encodings, followed by a training procedure that (i) distills the original CLIP text encoder into an encoder with relative position encodings and (ii) enhances the model for aligning longer captions with images. By effectively encoding captions longer than the default 77 tokens, our model outperforms baselines on cross-modal tasks such as retrieval and text-to-image generation. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3116753127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116753127</sourcerecordid><originalsourceid>FETCH-proquest_journals_31167531273</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDAn18QywUgjJz07N081JzUsvyVAILUgvSkxJTVFwBsrxMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8saGhmbmpsaGRuTFxqgCZUywa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116753127</pqid></control><display><type>article</type><title>TULIP: Token-length Upgraded CLIP</title><source>Publicly Available Content (ProQuest)</source><creator>Najdenkoska, Ivona ; Mohammad Mahdi Derakhshani ; Asano, Yuki M ; Nanne van Noord ; Worring, Marcel ; Snoek, Cees G M</creator><creatorcontrib>Najdenkoska, Ivona ; Mohammad Mahdi Derakhshani ; Asano, Yuki M ; Nanne van Noord ; Worring, Marcel ; Snoek, Cees G M</creatorcontrib><description>We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent work has attempted to overcome this limit, their proposed approaches struggle to model token relationships over longer distances and simply extend to a fixed new token length. Instead, we propose a generalizable method, named TULIP, able to upgrade the token length to any length for CLIP-like models. We do so by improving the architecture with relative position encodings, followed by a training procedure that (i) distills the original CLIP text encoder into an encoder with relative position encodings and (ii) enhances the model for aligning longer captions with images. By effectively encoding captions longer than the default 77 tokens, our model outperforms baselines on cross-modal tasks such as retrieval and text-to-image generation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coders ; Image processing</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3116753127?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Najdenkoska, Ivona</creatorcontrib><creatorcontrib>Mohammad Mahdi Derakhshani</creatorcontrib><creatorcontrib>Asano, Yuki M</creatorcontrib><creatorcontrib>Nanne van Noord</creatorcontrib><creatorcontrib>Worring, Marcel</creatorcontrib><creatorcontrib>Snoek, Cees G M</creatorcontrib><title>TULIP: Token-length Upgraded CLIP</title><title>arXiv.org</title><description>We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent work has attempted to overcome this limit, their proposed approaches struggle to model token relationships over longer distances and simply extend to a fixed new token length. Instead, we propose a generalizable method, named TULIP, able to upgrade the token length to any length for CLIP-like models. We do so by improving the architecture with relative position encodings, followed by a training procedure that (i) distills the original CLIP text encoder into an encoder with relative position encodings and (ii) enhances the model for aligning longer captions with images. By effectively encoding captions longer than the default 77 tokens, our model outperforms baselines on cross-modal tasks such as retrieval and text-to-image generation.</description><subject>Coders</subject><subject>Image processing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDAn18QywUgjJz07N081JzUsvyVAILUgvSkxJTVFwBsrxMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8saGhmbmpsaGRuTFxqgCZUywa</recordid><startdate>20241013</startdate><enddate>20241013</enddate><creator>Najdenkoska, Ivona</creator><creator>Mohammad Mahdi Derakhshani</creator><creator>Asano, Yuki M</creator><creator>Nanne van Noord</creator><creator>Worring, Marcel</creator><creator>Snoek, Cees G M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241013</creationdate><title>TULIP: Token-length Upgraded CLIP</title><author>Najdenkoska, Ivona ; Mohammad Mahdi Derakhshani ; Asano, Yuki M ; Nanne van Noord ; Worring, Marcel ; Snoek, Cees G M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31167531273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coders</topic><topic>Image processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Najdenkoska, Ivona</creatorcontrib><creatorcontrib>Mohammad Mahdi Derakhshani</creatorcontrib><creatorcontrib>Asano, Yuki M</creatorcontrib><creatorcontrib>Nanne van Noord</creatorcontrib><creatorcontrib>Worring, Marcel</creatorcontrib><creatorcontrib>Snoek, Cees G M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najdenkoska, Ivona</au><au>Mohammad Mahdi Derakhshani</au><au>Asano, Yuki M</au><au>Nanne van Noord</au><au>Worring, Marcel</au><au>Snoek, Cees G M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TULIP: Token-length Upgraded CLIP</atitle><jtitle>arXiv.org</jtitle><date>2024-10-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent work has attempted to overcome this limit, their proposed approaches struggle to model token relationships over longer distances and simply extend to a fixed new token length. Instead, we propose a generalizable method, named TULIP, able to upgrade the token length to any length for CLIP-like models. We do so by improving the architecture with relative position encodings, followed by a training procedure that (i) distills the original CLIP text encoder into an encoder with relative position encodings and (ii) enhances the model for aligning longer captions with images. By effectively encoding captions longer than the default 77 tokens, our model outperforms baselines on cross-modal tasks such as retrieval and text-to-image generation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3116753127 |
source | Publicly Available Content (ProQuest) |
subjects | Coders Image processing |
title | TULIP: Token-length Upgraded CLIP |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TULIP:%20Token-length%20Upgraded%20CLIP&rft.jtitle=arXiv.org&rft.au=Najdenkoska,%20Ivona&rft.date=2024-10-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3116753127%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31167531273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116753127&rft_id=info:pmid/&rfr_iscdi=true |