Loading…

A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming

We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the gen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of global optimization 2024-11, Vol.90 (3), p.755-779
Main Authors: Iusem, Alfredo, Lara, Felipe, Marcavillaca, Raúl T., Yen, Le Hai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-34d2c5ca3a0a549e5b188476e8be716ef64104d9856e4508048a4ae0f58f0a7f3
container_end_page 779
container_issue 3
container_start_page 755
container_title Journal of global optimization
container_volume 90
creator Iusem, Alfredo
Lara, Felipe
Marcavillaca, Raúl T.
Yen, Le Hai
description We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities.
doi_str_mv 10.1007/s10898-024-01419-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3117171604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117171604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-34d2c5ca3a0a549e5b188476e8be716ef64104d9856e4508048a4ae0f58f0a7f3</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKcv4FXA6-hJm7TpZRmbCkMHzuuQdWnNaJsu6dx8e1MreCe5OAS-_-ecD6FbCvcUIH3wFEQmCESMAGU0I-IMTShPYxJlNDlHE8giTjgAvURX3u8AIBM8miCX4_XRkrded3jl7Mk0qsYra9oe53Vlnek_Glxah19sW9j2U5_wfH8wtdk4c2iGyKbWjcfHAOK862pTqN7Y1uPe4oVTxfAZKp2tnGoa01bX6KJUtdc3v3OK3hfz9eyJLF8fn2f5khQRQE9ito0KXqhYgeIs03xDhWBposVGpzTRZcIosG04I9GMgwAmFFMaSi5KUGkZT9Hd2Ns5uz9o38udPbiwjJcxpWl4CbBARSNVOOu906XsXJDgviQFObiVo1sZ3Moft1KEUDyGfIDbSru_6n9S37xDfX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117171604</pqid></control><display><type>article</type><title>A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming</title><source>Springer Link</source><creator>Iusem, Alfredo ; Lara, Felipe ; Marcavillaca, Raúl T. ; Yen, Le Hai</creator><creatorcontrib>Iusem, Alfredo ; Lara, Felipe ; Marcavillaca, Raúl T. ; Yen, Le Hai</creatorcontrib><description>We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-024-01419-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Equilibrium ; Hilbert space ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Ordinary differential equations ; Real Functions</subject><ispartof>Journal of global optimization, 2024-11, Vol.90 (3), p.755-779</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-34d2c5ca3a0a549e5b188476e8be716ef64104d9856e4508048a4ae0f58f0a7f3</cites><orcidid>0000-0003-3748-0768 ; 0000-0002-9965-0921 ; 0000-0002-6725-6567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Iusem, Alfredo</creatorcontrib><creatorcontrib>Lara, Felipe</creatorcontrib><creatorcontrib>Marcavillaca, Raúl T.</creatorcontrib><creatorcontrib>Yen, Le Hai</creatorcontrib><title>A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Equilibrium</subject><subject>Hilbert space</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>Real Functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kNFKwzAUhoMoOKcv4FXA6-hJm7TpZRmbCkMHzuuQdWnNaJsu6dx8e1MreCe5OAS-_-ecD6FbCvcUIH3wFEQmCESMAGU0I-IMTShPYxJlNDlHE8giTjgAvURX3u8AIBM8miCX4_XRkrded3jl7Mk0qsYra9oe53Vlnek_Glxah19sW9j2U5_wfH8wtdk4c2iGyKbWjcfHAOK862pTqN7Y1uPe4oVTxfAZKp2tnGoa01bX6KJUtdc3v3OK3hfz9eyJLF8fn2f5khQRQE9ito0KXqhYgeIs03xDhWBposVGpzTRZcIosG04I9GMgwAmFFMaSi5KUGkZT9Hd2Ns5uz9o38udPbiwjJcxpWl4CbBARSNVOOu906XsXJDgviQFObiVo1sZ3Moft1KEUDyGfIDbSru_6n9S37xDfX4</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Iusem, Alfredo</creator><creator>Lara, Felipe</creator><creator>Marcavillaca, Raúl T.</creator><creator>Yen, Le Hai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3748-0768</orcidid><orcidid>https://orcid.org/0000-0002-9965-0921</orcidid><orcidid>https://orcid.org/0000-0002-6725-6567</orcidid></search><sort><creationdate>20241101</creationdate><title>A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming</title><author>Iusem, Alfredo ; Lara, Felipe ; Marcavillaca, Raúl T. ; Yen, Le Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-34d2c5ca3a0a549e5b188476e8be716ef64104d9856e4508048a4ae0f58f0a7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Equilibrium</topic><topic>Hilbert space</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>Real Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iusem, Alfredo</creatorcontrib><creatorcontrib>Lara, Felipe</creatorcontrib><creatorcontrib>Marcavillaca, Raúl T.</creatorcontrib><creatorcontrib>Yen, Le Hai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iusem, Alfredo</au><au>Lara, Felipe</au><au>Marcavillaca, Raúl T.</au><au>Yen, Le Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>90</volume><issue>3</issue><spage>755</spage><epage>779</epage><pages>755-779</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-024-01419-8</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-3748-0768</orcidid><orcidid>https://orcid.org/0000-0002-9965-0921</orcidid><orcidid>https://orcid.org/0000-0002-6725-6567</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2024-11, Vol.90 (3), p.755-779
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_journals_3117171604
source Springer Link
subjects Algorithms
Computer Science
Equilibrium
Hilbert space
Mathematical programming
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Ordinary differential equations
Real Functions
title A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Two-Step%20Proximal%20Point%20Algorithm%20for%20Nonconvex%20Equilibrium%20Problems%20with%20Applications%20to%20Fractional%20Programming&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Iusem,%20Alfredo&rft.date=2024-11-01&rft.volume=90&rft.issue=3&rft.spage=755&rft.epage=779&rft.pages=755-779&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-024-01419-8&rft_dat=%3Cproquest_cross%3E3117171604%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-34d2c5ca3a0a549e5b188476e8be716ef64104d9856e4508048a4ae0f58f0a7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3117171604&rft_id=info:pmid/&rfr_iscdi=true