Loading…
A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming
We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the gen...
Saved in:
Published in: | Journal of global optimization 2024-11, Vol.90 (3), p.755-779 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-34d2c5ca3a0a549e5b188476e8be716ef64104d9856e4508048a4ae0f58f0a7f3 |
container_end_page | 779 |
container_issue | 3 |
container_start_page | 755 |
container_title | Journal of global optimization |
container_volume | 90 |
creator | Iusem, Alfredo Lara, Felipe Marcavillaca, Raúl T. Yen, Le Hai |
description | We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities. |
doi_str_mv | 10.1007/s10898-024-01419-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3117171604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117171604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-34d2c5ca3a0a549e5b188476e8be716ef64104d9856e4508048a4ae0f58f0a7f3</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKcv4FXA6-hJm7TpZRmbCkMHzuuQdWnNaJsu6dx8e1MreCe5OAS-_-ecD6FbCvcUIH3wFEQmCESMAGU0I-IMTShPYxJlNDlHE8giTjgAvURX3u8AIBM8miCX4_XRkrded3jl7Mk0qsYra9oe53Vlnek_Glxah19sW9j2U5_wfH8wtdk4c2iGyKbWjcfHAOK862pTqN7Y1uPe4oVTxfAZKp2tnGoa01bX6KJUtdc3v3OK3hfz9eyJLF8fn2f5khQRQE9ito0KXqhYgeIs03xDhWBposVGpzTRZcIosG04I9GMgwAmFFMaSi5KUGkZT9Hd2Ns5uz9o38udPbiwjJcxpWl4CbBARSNVOOu906XsXJDgviQFObiVo1sZ3Moft1KEUDyGfIDbSru_6n9S37xDfX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117171604</pqid></control><display><type>article</type><title>A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming</title><source>Springer Link</source><creator>Iusem, Alfredo ; Lara, Felipe ; Marcavillaca, Raúl T. ; Yen, Le Hai</creator><creatorcontrib>Iusem, Alfredo ; Lara, Felipe ; Marcavillaca, Raúl T. ; Yen, Le Hai</creatorcontrib><description>We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-024-01419-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Equilibrium ; Hilbert space ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Ordinary differential equations ; Real Functions</subject><ispartof>Journal of global optimization, 2024-11, Vol.90 (3), p.755-779</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-34d2c5ca3a0a549e5b188476e8be716ef64104d9856e4508048a4ae0f58f0a7f3</cites><orcidid>0000-0003-3748-0768 ; 0000-0002-9965-0921 ; 0000-0002-6725-6567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Iusem, Alfredo</creatorcontrib><creatorcontrib>Lara, Felipe</creatorcontrib><creatorcontrib>Marcavillaca, Raúl T.</creatorcontrib><creatorcontrib>Yen, Le Hai</creatorcontrib><title>A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Equilibrium</subject><subject>Hilbert space</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>Real Functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kNFKwzAUhoMoOKcv4FXA6-hJm7TpZRmbCkMHzuuQdWnNaJsu6dx8e1MreCe5OAS-_-ecD6FbCvcUIH3wFEQmCESMAGU0I-IMTShPYxJlNDlHE8giTjgAvURX3u8AIBM8miCX4_XRkrded3jl7Mk0qsYra9oe53Vlnek_Glxah19sW9j2U5_wfH8wtdk4c2iGyKbWjcfHAOK862pTqN7Y1uPe4oVTxfAZKp2tnGoa01bX6KJUtdc3v3OK3hfz9eyJLF8fn2f5khQRQE9ito0KXqhYgeIs03xDhWBposVGpzTRZcIosG04I9GMgwAmFFMaSi5KUGkZT9Hd2Ns5uz9o38udPbiwjJcxpWl4CbBARSNVOOu906XsXJDgviQFObiVo1sZ3Moft1KEUDyGfIDbSru_6n9S37xDfX4</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Iusem, Alfredo</creator><creator>Lara, Felipe</creator><creator>Marcavillaca, Raúl T.</creator><creator>Yen, Le Hai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3748-0768</orcidid><orcidid>https://orcid.org/0000-0002-9965-0921</orcidid><orcidid>https://orcid.org/0000-0002-6725-6567</orcidid></search><sort><creationdate>20241101</creationdate><title>A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming</title><author>Iusem, Alfredo ; Lara, Felipe ; Marcavillaca, Raúl T. ; Yen, Le Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-34d2c5ca3a0a549e5b188476e8be716ef64104d9856e4508048a4ae0f58f0a7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Equilibrium</topic><topic>Hilbert space</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>Real Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iusem, Alfredo</creatorcontrib><creatorcontrib>Lara, Felipe</creatorcontrib><creatorcontrib>Marcavillaca, Raúl T.</creatorcontrib><creatorcontrib>Yen, Le Hai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iusem, Alfredo</au><au>Lara, Felipe</au><au>Marcavillaca, Raúl T.</au><au>Yen, Le Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>90</volume><issue>3</issue><spage>755</spage><epage>779</epage><pages>755-779</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-024-01419-8</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-3748-0768</orcidid><orcidid>https://orcid.org/0000-0002-9965-0921</orcidid><orcidid>https://orcid.org/0000-0002-6725-6567</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2024-11, Vol.90 (3), p.755-779 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_3117171604 |
source | Springer Link |
subjects | Algorithms Computer Science Equilibrium Hilbert space Mathematical programming Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Ordinary differential equations Real Functions |
title | A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Two-Step%20Proximal%20Point%20Algorithm%20for%20Nonconvex%20Equilibrium%20Problems%20with%20Applications%20to%20Fractional%20Programming&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Iusem,%20Alfredo&rft.date=2024-11-01&rft.volume=90&rft.issue=3&rft.spage=755&rft.epage=779&rft.pages=755-779&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-024-01419-8&rft_dat=%3Cproquest_cross%3E3117171604%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-34d2c5ca3a0a549e5b188476e8be716ef64104d9856e4508048a4ae0f58f0a7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3117171604&rft_id=info:pmid/&rfr_iscdi=true |