Loading…

Fundus to Fluorescein Angiography Video Generation as a Retinal Generative Foundation Model

Fundus fluorescein angiography (FFA) is crucial for diagnosing and monitoring retinal vascular issues but is limited by its invasive nature and restricted accessibility compared to color fundus (CF) imaging. Existing methods that convert CF images to FFA are confined to static image generation, miss...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Zhang, Weiyi, Yang, Jiancheng, Chen, Ruoyu, Huang, Siyu, Xu, Pusheng, Chen, Xiaolan, Lu, Shanfu, Cao, Hongyu, He, Mingguang, Shi, Danli
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhang, Weiyi
Yang, Jiancheng
Chen, Ruoyu
Huang, Siyu
Xu, Pusheng
Chen, Xiaolan
Lu, Shanfu
Cao, Hongyu
He, Mingguang
Shi, Danli
description Fundus fluorescein angiography (FFA) is crucial for diagnosing and monitoring retinal vascular issues but is limited by its invasive nature and restricted accessibility compared to color fundus (CF) imaging. Existing methods that convert CF images to FFA are confined to static image generation, missing the dynamic lesional changes. We introduce Fundus2Video, an autoregressive generative adversarial network (GAN) model that generates dynamic FFA videos from single CF images. Fundus2Video excels in video generation, achieving an FVD of 1497.12 and a PSNR of 11.77. Clinical experts have validated the fidelity of the generated videos. Additionally, the model's generator demonstrates remarkable downstream transferability across ten external public datasets, including blood vessel segmentation, retinal disease diagnosis, systemic disease prediction, and multimodal retrieval, showcasing impressive zero-shot and few-shot capabilities. These findings position Fundus2Video as a powerful, non-invasive alternative to FFA exams and a versatile retinal generative foundation model that captures both static and temporal retinal features, enabling the representation of complex inter-modality relationships.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3118116889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118116889</sourcerecordid><originalsourceid>FETCH-proquest_journals_31181168893</originalsourceid><addsrcrecordid>eNqNjLEKwjAUAIMgWLT_8MC50CS2xlHE6uIi4uJQgn3WlJJXk0bw7y0ozk4Hx3EjFgkpeaIWQkxY7H2TpqnIlyLLZMQuRbBV8NATFG0gh_6KxsLa1oZqp7v7C86mQoIdWnS6N2RBe9BwxN5Y3f78E6Gg4fVJDlRhO2Pjm249xl9O2bzYnjb7pHP0COj7sqHghokvJeeK81yplfyvegN0DEMF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118116889</pqid></control><display><type>article</type><title>Fundus to Fluorescein Angiography Video Generation as a Retinal Generative Foundation Model</title><source>Publicly Available Content Database</source><creator>Zhang, Weiyi ; Yang, Jiancheng ; Chen, Ruoyu ; Huang, Siyu ; Xu, Pusheng ; Chen, Xiaolan ; Lu, Shanfu ; Cao, Hongyu ; He, Mingguang ; Shi, Danli</creator><creatorcontrib>Zhang, Weiyi ; Yang, Jiancheng ; Chen, Ruoyu ; Huang, Siyu ; Xu, Pusheng ; Chen, Xiaolan ; Lu, Shanfu ; Cao, Hongyu ; He, Mingguang ; Shi, Danli</creatorcontrib><description>Fundus fluorescein angiography (FFA) is crucial for diagnosing and monitoring retinal vascular issues but is limited by its invasive nature and restricted accessibility compared to color fundus (CF) imaging. Existing methods that convert CF images to FFA are confined to static image generation, missing the dynamic lesional changes. We introduce Fundus2Video, an autoregressive generative adversarial network (GAN) model that generates dynamic FFA videos from single CF images. Fundus2Video excels in video generation, achieving an FVD of 1497.12 and a PSNR of 11.77. Clinical experts have validated the fidelity of the generated videos. Additionally, the model's generator demonstrates remarkable downstream transferability across ten external public datasets, including blood vessel segmentation, retinal disease diagnosis, systemic disease prediction, and multimodal retrieval, showcasing impressive zero-shot and few-shot capabilities. These findings position Fundus2Video as a powerful, non-invasive alternative to FFA exams and a versatile retinal generative foundation model that captures both static and temporal retinal features, enabling the representation of complex inter-modality relationships.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Angiography ; Blood vessels ; Fluorescein ; Generative adversarial networks ; Image processing ; Medical imaging ; Video</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3118116889?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhang, Weiyi</creatorcontrib><creatorcontrib>Yang, Jiancheng</creatorcontrib><creatorcontrib>Chen, Ruoyu</creatorcontrib><creatorcontrib>Huang, Siyu</creatorcontrib><creatorcontrib>Xu, Pusheng</creatorcontrib><creatorcontrib>Chen, Xiaolan</creatorcontrib><creatorcontrib>Lu, Shanfu</creatorcontrib><creatorcontrib>Cao, Hongyu</creatorcontrib><creatorcontrib>He, Mingguang</creatorcontrib><creatorcontrib>Shi, Danli</creatorcontrib><title>Fundus to Fluorescein Angiography Video Generation as a Retinal Generative Foundation Model</title><title>arXiv.org</title><description>Fundus fluorescein angiography (FFA) is crucial for diagnosing and monitoring retinal vascular issues but is limited by its invasive nature and restricted accessibility compared to color fundus (CF) imaging. Existing methods that convert CF images to FFA are confined to static image generation, missing the dynamic lesional changes. We introduce Fundus2Video, an autoregressive generative adversarial network (GAN) model that generates dynamic FFA videos from single CF images. Fundus2Video excels in video generation, achieving an FVD of 1497.12 and a PSNR of 11.77. Clinical experts have validated the fidelity of the generated videos. Additionally, the model's generator demonstrates remarkable downstream transferability across ten external public datasets, including blood vessel segmentation, retinal disease diagnosis, systemic disease prediction, and multimodal retrieval, showcasing impressive zero-shot and few-shot capabilities. These findings position Fundus2Video as a powerful, non-invasive alternative to FFA exams and a versatile retinal generative foundation model that captures both static and temporal retinal features, enabling the representation of complex inter-modality relationships.</description><subject>Angiography</subject><subject>Blood vessels</subject><subject>Fluorescein</subject><subject>Generative adversarial networks</subject><subject>Image processing</subject><subject>Medical imaging</subject><subject>Video</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjLEKwjAUAIMgWLT_8MC50CS2xlHE6uIi4uJQgn3WlJJXk0bw7y0ozk4Hx3EjFgkpeaIWQkxY7H2TpqnIlyLLZMQuRbBV8NATFG0gh_6KxsLa1oZqp7v7C86mQoIdWnS6N2RBe9BwxN5Y3f78E6Gg4fVJDlRhO2Pjm249xl9O2bzYnjb7pHP0COj7sqHghokvJeeK81yplfyvegN0DEMF</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Zhang, Weiyi</creator><creator>Yang, Jiancheng</creator><creator>Chen, Ruoyu</creator><creator>Huang, Siyu</creator><creator>Xu, Pusheng</creator><creator>Chen, Xiaolan</creator><creator>Lu, Shanfu</creator><creator>Cao, Hongyu</creator><creator>He, Mingguang</creator><creator>Shi, Danli</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241018</creationdate><title>Fundus to Fluorescein Angiography Video Generation as a Retinal Generative Foundation Model</title><author>Zhang, Weiyi ; Yang, Jiancheng ; Chen, Ruoyu ; Huang, Siyu ; Xu, Pusheng ; Chen, Xiaolan ; Lu, Shanfu ; Cao, Hongyu ; He, Mingguang ; Shi, Danli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31181168893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angiography</topic><topic>Blood vessels</topic><topic>Fluorescein</topic><topic>Generative adversarial networks</topic><topic>Image processing</topic><topic>Medical imaging</topic><topic>Video</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Weiyi</creatorcontrib><creatorcontrib>Yang, Jiancheng</creatorcontrib><creatorcontrib>Chen, Ruoyu</creatorcontrib><creatorcontrib>Huang, Siyu</creatorcontrib><creatorcontrib>Xu, Pusheng</creatorcontrib><creatorcontrib>Chen, Xiaolan</creatorcontrib><creatorcontrib>Lu, Shanfu</creatorcontrib><creatorcontrib>Cao, Hongyu</creatorcontrib><creatorcontrib>He, Mingguang</creatorcontrib><creatorcontrib>Shi, Danli</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Weiyi</au><au>Yang, Jiancheng</au><au>Chen, Ruoyu</au><au>Huang, Siyu</au><au>Xu, Pusheng</au><au>Chen, Xiaolan</au><au>Lu, Shanfu</au><au>Cao, Hongyu</au><au>He, Mingguang</au><au>Shi, Danli</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fundus to Fluorescein Angiography Video Generation as a Retinal Generative Foundation Model</atitle><jtitle>arXiv.org</jtitle><date>2024-10-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Fundus fluorescein angiography (FFA) is crucial for diagnosing and monitoring retinal vascular issues but is limited by its invasive nature and restricted accessibility compared to color fundus (CF) imaging. Existing methods that convert CF images to FFA are confined to static image generation, missing the dynamic lesional changes. We introduce Fundus2Video, an autoregressive generative adversarial network (GAN) model that generates dynamic FFA videos from single CF images. Fundus2Video excels in video generation, achieving an FVD of 1497.12 and a PSNR of 11.77. Clinical experts have validated the fidelity of the generated videos. Additionally, the model's generator demonstrates remarkable downstream transferability across ten external public datasets, including blood vessel segmentation, retinal disease diagnosis, systemic disease prediction, and multimodal retrieval, showcasing impressive zero-shot and few-shot capabilities. These findings position Fundus2Video as a powerful, non-invasive alternative to FFA exams and a versatile retinal generative foundation model that captures both static and temporal retinal features, enabling the representation of complex inter-modality relationships.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3118116889
source Publicly Available Content Database
subjects Angiography
Blood vessels
Fluorescein
Generative adversarial networks
Image processing
Medical imaging
Video
title Fundus to Fluorescein Angiography Video Generation as a Retinal Generative Foundation Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fundus%20to%20Fluorescein%20Angiography%20Video%20Generation%20as%20a%20Retinal%20Generative%20Foundation%20Model&rft.jtitle=arXiv.org&rft.au=Zhang,%20Weiyi&rft.date=2024-10-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3118116889%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31181168893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3118116889&rft_id=info:pmid/&rfr_iscdi=true