Loading…

Large Language Models in Targeted Sentiment Analysis for Russian

In this paper, we investigate the use of decoder-based generative transformers for extracting sentiment towards the named entities in Russian news articles. We study sentiment analysis capabilities of instruction-tuned large language models (LLMs). We consider the dataset of RuSentNE-2023 in our stu...

Full description

Saved in:
Bibliographic Details
Published in:Lobachevskii journal of mathematics 2024-07, Vol.45 (7), p.3148-3158
Main Authors: Rusnachenko, N., Golubev, A., Loukachevitch, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c198t-cccc441100daa8f6ae3e1408f152071ea179c1db55408820f67b1666809d89f33
container_end_page 3158
container_issue 7
container_start_page 3148
container_title Lobachevskii journal of mathematics
container_volume 45
creator Rusnachenko, N.
Golubev, A.
Loukachevitch, N.
description In this paper, we investigate the use of decoder-based generative transformers for extracting sentiment towards the named entities in Russian news articles. We study sentiment analysis capabilities of instruction-tuned large language models (LLMs). We consider the dataset of RuSentNE-2023 in our study. The first group of experiments was aimed at the evaluation of zero-shot capabilities of LLMs with closed and open transparencies. The second covers the fine-tuning of Flan-T5 using the ‘‘chain-of-thought’’ (CoT) three-hop reasoning framework (THoR). We found that the results of the zero-shot approaches are similar to the results achieved by baseline fine-tuned encoder-based transformers (BERT ). Reasoning capabilities of the fine-tuned Flan-T5 models with THoR achieve at least increment with the base-size model compared to the results of the zero-shot experiment. The best results of sentiment analysis on RuSentNE-2023 were achieved by fine-tuned Flan-T5 , which surpassed the results of previous state-of-the-art transformer-based classifiers. Our CoT application framework is publicly available: https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework
doi_str_mv 10.1134/S1995080224603758
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3118298096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118298096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-cccc441100daa8f6ae3e1408f152071ea179c1db55408820f67b1666809d89f33</originalsourceid><addsrcrecordid>eNp1kMFKw0AQhhdRsFYfwNuC5-jOJtns3ixFqxARbD2HbbIbUtKk7iSHvr0TKngQ5zAzzP_9wzCM3YK4B4iThzUYkwotpEyUiLNUn7EZaNCRMUqeU09yNOmX7ApxJwhUSs3YY25D7Xhuu3q01Lz1lWuRNx3fTMLgKr523dDsKfFFZ9sjNsh9H_jHiNjY7ppdeNuiu_mpc_b5_LRZvkT5--p1ucijEoweopIiSQCEqKzVXlkXO0iE9pBKkYGzkJkSqm2a0lBL4VW2BbpQC1Np4-N4zu5Oew-h_xodDsWuHwMdhEUMoKUhUhEFJ6oMPWJwvjiEZm_DsQBRTI8q_jyKPPLkQWK72oXfzf-bvgHHH2hH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118298096</pqid></control><display><type>article</type><title>Large Language Models in Targeted Sentiment Analysis for Russian</title><source>Springer Nature</source><creator>Rusnachenko, N. ; Golubev, A. ; Loukachevitch, N.</creator><creatorcontrib>Rusnachenko, N. ; Golubev, A. ; Loukachevitch, N.</creatorcontrib><description>In this paper, we investigate the use of decoder-based generative transformers for extracting sentiment towards the named entities in Russian news articles. We study sentiment analysis capabilities of instruction-tuned large language models (LLMs). We consider the dataset of RuSentNE-2023 in our study. The first group of experiments was aimed at the evaluation of zero-shot capabilities of LLMs with closed and open transparencies. The second covers the fine-tuning of Flan-T5 using the ‘‘chain-of-thought’’ (CoT) three-hop reasoning framework (THoR). We found that the results of the zero-shot approaches are similar to the results achieved by baseline fine-tuned encoder-based transformers (BERT ). Reasoning capabilities of the fine-tuned Flan-T5 models with THoR achieve at least increment with the base-size model compared to the results of the zero-shot experiment. The best results of sentiment analysis on RuSentNE-2023 were achieved by fine-tuned Flan-T5 , which surpassed the results of previous state-of-the-art transformer-based classifiers. Our CoT application framework is publicly available: https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080224603758</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Data mining ; Geometry ; Large language models ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Reasoning ; Sentiment analysis</subject><ispartof>Lobachevskii journal of mathematics, 2024-07, Vol.45 (7), p.3148-3158</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-cccc441100daa8f6ae3e1408f152071ea179c1db55408820f67b1666809d89f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rusnachenko, N.</creatorcontrib><creatorcontrib>Golubev, A.</creatorcontrib><creatorcontrib>Loukachevitch, N.</creatorcontrib><title>Large Language Models in Targeted Sentiment Analysis for Russian</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this paper, we investigate the use of decoder-based generative transformers for extracting sentiment towards the named entities in Russian news articles. We study sentiment analysis capabilities of instruction-tuned large language models (LLMs). We consider the dataset of RuSentNE-2023 in our study. The first group of experiments was aimed at the evaluation of zero-shot capabilities of LLMs with closed and open transparencies. The second covers the fine-tuning of Flan-T5 using the ‘‘chain-of-thought’’ (CoT) three-hop reasoning framework (THoR). We found that the results of the zero-shot approaches are similar to the results achieved by baseline fine-tuned encoder-based transformers (BERT ). Reasoning capabilities of the fine-tuned Flan-T5 models with THoR achieve at least increment with the base-size model compared to the results of the zero-shot experiment. The best results of sentiment analysis on RuSentNE-2023 were achieved by fine-tuned Flan-T5 , which surpassed the results of previous state-of-the-art transformer-based classifiers. Our CoT application framework is publicly available: https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework</description><subject>Algebra</subject><subject>Analysis</subject><subject>Data mining</subject><subject>Geometry</subject><subject>Large language models</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Reasoning</subject><subject>Sentiment analysis</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKw0AQhhdRsFYfwNuC5-jOJtns3ixFqxARbD2HbbIbUtKk7iSHvr0TKngQ5zAzzP_9wzCM3YK4B4iThzUYkwotpEyUiLNUn7EZaNCRMUqeU09yNOmX7ApxJwhUSs3YY25D7Xhuu3q01Lz1lWuRNx3fTMLgKr523dDsKfFFZ9sjNsh9H_jHiNjY7ppdeNuiu_mpc_b5_LRZvkT5--p1ucijEoweopIiSQCEqKzVXlkXO0iE9pBKkYGzkJkSqm2a0lBL4VW2BbpQC1Np4-N4zu5Oew-h_xodDsWuHwMdhEUMoKUhUhEFJ6oMPWJwvjiEZm_DsQBRTI8q_jyKPPLkQWK72oXfzf-bvgHHH2hH</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Rusnachenko, N.</creator><creator>Golubev, A.</creator><creator>Loukachevitch, N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Large Language Models in Targeted Sentiment Analysis for Russian</title><author>Rusnachenko, N. ; Golubev, A. ; Loukachevitch, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-cccc441100daa8f6ae3e1408f152071ea179c1db55408820f67b1666809d89f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Data mining</topic><topic>Geometry</topic><topic>Large language models</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Reasoning</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusnachenko, N.</creatorcontrib><creatorcontrib>Golubev, A.</creatorcontrib><creatorcontrib>Loukachevitch, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusnachenko, N.</au><au>Golubev, A.</au><au>Loukachevitch, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Language Models in Targeted Sentiment Analysis for Russian</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>45</volume><issue>7</issue><spage>3148</spage><epage>3158</epage><pages>3148-3158</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this paper, we investigate the use of decoder-based generative transformers for extracting sentiment towards the named entities in Russian news articles. We study sentiment analysis capabilities of instruction-tuned large language models (LLMs). We consider the dataset of RuSentNE-2023 in our study. The first group of experiments was aimed at the evaluation of zero-shot capabilities of LLMs with closed and open transparencies. The second covers the fine-tuning of Flan-T5 using the ‘‘chain-of-thought’’ (CoT) three-hop reasoning framework (THoR). We found that the results of the zero-shot approaches are similar to the results achieved by baseline fine-tuned encoder-based transformers (BERT ). Reasoning capabilities of the fine-tuned Flan-T5 models with THoR achieve at least increment with the base-size model compared to the results of the zero-shot experiment. The best results of sentiment analysis on RuSentNE-2023 were achieved by fine-tuned Flan-T5 , which surpassed the results of previous state-of-the-art transformer-based classifiers. Our CoT application framework is publicly available: https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080224603758</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2024-07, Vol.45 (7), p.3148-3158
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_3118298096
source Springer Nature
subjects Algebra
Analysis
Data mining
Geometry
Large language models
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Reasoning
Sentiment analysis
title Large Language Models in Targeted Sentiment Analysis for Russian
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Language%20Models%20in%20Targeted%20Sentiment%20Analysis%20for%20Russian&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Rusnachenko,%20N.&rft.date=2024-07-01&rft.volume=45&rft.issue=7&rft.spage=3148&rft.epage=3158&rft.pages=3148-3158&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080224603758&rft_dat=%3Cproquest_cross%3E3118298096%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-cccc441100daa8f6ae3e1408f152071ea179c1db55408820f67b1666809d89f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3118298096&rft_id=info:pmid/&rfr_iscdi=true