Loading…
Large Language Models in Targeted Sentiment Analysis for Russian
In this paper, we investigate the use of decoder-based generative transformers for extracting sentiment towards the named entities in Russian news articles. We study sentiment analysis capabilities of instruction-tuned large language models (LLMs). We consider the dataset of RuSentNE-2023 in our stu...
Saved in:
Published in: | Lobachevskii journal of mathematics 2024-07, Vol.45 (7), p.3148-3158 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c198t-cccc441100daa8f6ae3e1408f152071ea179c1db55408820f67b1666809d89f33 |
container_end_page | 3158 |
container_issue | 7 |
container_start_page | 3148 |
container_title | Lobachevskii journal of mathematics |
container_volume | 45 |
creator | Rusnachenko, N. Golubev, A. Loukachevitch, N. |
description | In this paper, we investigate the use of decoder-based generative transformers for extracting sentiment towards the named entities in Russian news articles. We study sentiment analysis capabilities of instruction-tuned large language models (LLMs). We consider the dataset of RuSentNE-2023 in our study. The first group of experiments was aimed at the evaluation of zero-shot capabilities of LLMs with closed and open transparencies. The second covers the fine-tuning of Flan-T5 using the ‘‘chain-of-thought’’ (CoT) three-hop reasoning framework (THoR). We found that the results of the zero-shot approaches are similar to the results achieved by baseline fine-tuned encoder-based transformers (BERT
). Reasoning capabilities of the fine-tuned Flan-T5 models with THoR achieve at least
increment with the base-size model compared to the results of the zero-shot experiment. The best results of sentiment analysis on RuSentNE-2023 were achieved by fine-tuned Flan-T5
, which surpassed the results of previous state-of-the-art transformer-based classifiers. Our CoT application framework is publicly available:
https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework |
doi_str_mv | 10.1134/S1995080224603758 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3118298096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118298096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-cccc441100daa8f6ae3e1408f152071ea179c1db55408820f67b1666809d89f33</originalsourceid><addsrcrecordid>eNp1kMFKw0AQhhdRsFYfwNuC5-jOJtns3ixFqxARbD2HbbIbUtKk7iSHvr0TKngQ5zAzzP_9wzCM3YK4B4iThzUYkwotpEyUiLNUn7EZaNCRMUqeU09yNOmX7ApxJwhUSs3YY25D7Xhuu3q01Lz1lWuRNx3fTMLgKr523dDsKfFFZ9sjNsh9H_jHiNjY7ppdeNuiu_mpc_b5_LRZvkT5--p1ucijEoweopIiSQCEqKzVXlkXO0iE9pBKkYGzkJkSqm2a0lBL4VW2BbpQC1Np4-N4zu5Oew-h_xodDsWuHwMdhEUMoKUhUhEFJ6oMPWJwvjiEZm_DsQBRTI8q_jyKPPLkQWK72oXfzf-bvgHHH2hH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118298096</pqid></control><display><type>article</type><title>Large Language Models in Targeted Sentiment Analysis for Russian</title><source>Springer Nature</source><creator>Rusnachenko, N. ; Golubev, A. ; Loukachevitch, N.</creator><creatorcontrib>Rusnachenko, N. ; Golubev, A. ; Loukachevitch, N.</creatorcontrib><description>In this paper, we investigate the use of decoder-based generative transformers for extracting sentiment towards the named entities in Russian news articles. We study sentiment analysis capabilities of instruction-tuned large language models (LLMs). We consider the dataset of RuSentNE-2023 in our study. The first group of experiments was aimed at the evaluation of zero-shot capabilities of LLMs with closed and open transparencies. The second covers the fine-tuning of Flan-T5 using the ‘‘chain-of-thought’’ (CoT) three-hop reasoning framework (THoR). We found that the results of the zero-shot approaches are similar to the results achieved by baseline fine-tuned encoder-based transformers (BERT
). Reasoning capabilities of the fine-tuned Flan-T5 models with THoR achieve at least
increment with the base-size model compared to the results of the zero-shot experiment. The best results of sentiment analysis on RuSentNE-2023 were achieved by fine-tuned Flan-T5
, which surpassed the results of previous state-of-the-art transformer-based classifiers. Our CoT application framework is publicly available:
https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080224603758</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Data mining ; Geometry ; Large language models ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Reasoning ; Sentiment analysis</subject><ispartof>Lobachevskii journal of mathematics, 2024-07, Vol.45 (7), p.3148-3158</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-cccc441100daa8f6ae3e1408f152071ea179c1db55408820f67b1666809d89f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rusnachenko, N.</creatorcontrib><creatorcontrib>Golubev, A.</creatorcontrib><creatorcontrib>Loukachevitch, N.</creatorcontrib><title>Large Language Models in Targeted Sentiment Analysis for Russian</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this paper, we investigate the use of decoder-based generative transformers for extracting sentiment towards the named entities in Russian news articles. We study sentiment analysis capabilities of instruction-tuned large language models (LLMs). We consider the dataset of RuSentNE-2023 in our study. The first group of experiments was aimed at the evaluation of zero-shot capabilities of LLMs with closed and open transparencies. The second covers the fine-tuning of Flan-T5 using the ‘‘chain-of-thought’’ (CoT) three-hop reasoning framework (THoR). We found that the results of the zero-shot approaches are similar to the results achieved by baseline fine-tuned encoder-based transformers (BERT
). Reasoning capabilities of the fine-tuned Flan-T5 models with THoR achieve at least
increment with the base-size model compared to the results of the zero-shot experiment. The best results of sentiment analysis on RuSentNE-2023 were achieved by fine-tuned Flan-T5
, which surpassed the results of previous state-of-the-art transformer-based classifiers. Our CoT application framework is publicly available:
https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework</description><subject>Algebra</subject><subject>Analysis</subject><subject>Data mining</subject><subject>Geometry</subject><subject>Large language models</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Reasoning</subject><subject>Sentiment analysis</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKw0AQhhdRsFYfwNuC5-jOJtns3ixFqxARbD2HbbIbUtKk7iSHvr0TKngQ5zAzzP_9wzCM3YK4B4iThzUYkwotpEyUiLNUn7EZaNCRMUqeU09yNOmX7ApxJwhUSs3YY25D7Xhuu3q01Lz1lWuRNx3fTMLgKr523dDsKfFFZ9sjNsh9H_jHiNjY7ppdeNuiu_mpc_b5_LRZvkT5--p1ucijEoweopIiSQCEqKzVXlkXO0iE9pBKkYGzkJkSqm2a0lBL4VW2BbpQC1Np4-N4zu5Oew-h_xodDsWuHwMdhEUMoKUhUhEFJ6oMPWJwvjiEZm_DsQBRTI8q_jyKPPLkQWK72oXfzf-bvgHHH2hH</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Rusnachenko, N.</creator><creator>Golubev, A.</creator><creator>Loukachevitch, N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Large Language Models in Targeted Sentiment Analysis for Russian</title><author>Rusnachenko, N. ; Golubev, A. ; Loukachevitch, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-cccc441100daa8f6ae3e1408f152071ea179c1db55408820f67b1666809d89f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Data mining</topic><topic>Geometry</topic><topic>Large language models</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Reasoning</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusnachenko, N.</creatorcontrib><creatorcontrib>Golubev, A.</creatorcontrib><creatorcontrib>Loukachevitch, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusnachenko, N.</au><au>Golubev, A.</au><au>Loukachevitch, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Language Models in Targeted Sentiment Analysis for Russian</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>45</volume><issue>7</issue><spage>3148</spage><epage>3158</epage><pages>3148-3158</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this paper, we investigate the use of decoder-based generative transformers for extracting sentiment towards the named entities in Russian news articles. We study sentiment analysis capabilities of instruction-tuned large language models (LLMs). We consider the dataset of RuSentNE-2023 in our study. The first group of experiments was aimed at the evaluation of zero-shot capabilities of LLMs with closed and open transparencies. The second covers the fine-tuning of Flan-T5 using the ‘‘chain-of-thought’’ (CoT) three-hop reasoning framework (THoR). We found that the results of the zero-shot approaches are similar to the results achieved by baseline fine-tuned encoder-based transformers (BERT
). Reasoning capabilities of the fine-tuned Flan-T5 models with THoR achieve at least
increment with the base-size model compared to the results of the zero-shot experiment. The best results of sentiment analysis on RuSentNE-2023 were achieved by fine-tuned Flan-T5
, which surpassed the results of previous state-of-the-art transformer-based classifiers. Our CoT application framework is publicly available:
https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080224603758</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2024-07, Vol.45 (7), p.3148-3158 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_3118298096 |
source | Springer Nature |
subjects | Algebra Analysis Data mining Geometry Large language models Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes Reasoning Sentiment analysis |
title | Large Language Models in Targeted Sentiment Analysis for Russian |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Language%20Models%20in%20Targeted%20Sentiment%20Analysis%20for%20Russian&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Rusnachenko,%20N.&rft.date=2024-07-01&rft.volume=45&rft.issue=7&rft.spage=3148&rft.epage=3158&rft.pages=3148-3158&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080224603758&rft_dat=%3Cproquest_cross%3E3118298096%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-cccc441100daa8f6ae3e1408f152071ea179c1db55408820f67b1666809d89f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3118298096&rft_id=info:pmid/&rfr_iscdi=true |