Loading…
High‐Performance Electrode for Energy Storage Developed Using Single‐Source Precursor‐Driven Bas:Cos:La2S3 Trichalcogenide Semiconductor
Using single‐source precursor route, this work reports the synthesis of the novel chalcogenide heterosystem, i.e., BaS:CoS:La2S3 trichalcogenide heterosystem. With the narrowed band gap energy, BaS:CoS:La2S3 expresses excellent photonic response with 3.47 eV of tailored band gap resulting from chemi...
Saved in:
Published in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2024-10, Vol.221 (20), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using single‐source precursor route, this work reports the synthesis of the novel chalcogenide heterosystem, i.e., BaS:CoS:La2S3 trichalcogenide heterosystem. With the narrowed band gap energy, BaS:CoS:La2S3 expresses excellent photonic response with 3.47 eV of tailored band gap resulting from chemical synergism. This chalcogenide is marked by superior crystallinity and possessed an average crystallite size of 18.29 nm. Morphologically, BaS:CoS:La2S3 exists in the form of the roughly spherical grains arranged in the irregular manner. The developed chalcogenide is assessed for charge storage by fabricating the electrode using a nickel form as a support. In a 0.1 m KOH background electrolyte, the BaS:CoS:La2S3 adorns electrode excelled in achieving a specific capacitance of 967.24 F g−1. In addition, this trichalcogenide expresses the specific power density of 1659 W kg−1. Fabricated electrode retains original capacitance after different cycles. Regarding electrode–electrolyte interactions, the fabricated electrode shows minimal resistance, with an equivalent series resistance (Rs) of 1.42 Ω as indicated by impedance studies. Additional circuit elements, including CPE (Yo = 2.17 × 10−04, n = 0.71) and Rct (6.97 Ω cm−2), are obtained after circuit fitting for the BaS:CoS:La2S3 trichalcogenide decorated electrode. Exhibiting stable behavior for 43 h, the synthesized material demonstrates profound durability and functionality.
Novel BaS:CoS:La2S3 trichalcogenide has narrow band gap with the excellent optical, crystalline, vibrational, and morphological specifications. BaS:CoS:La2S3 decorates nickel foam electrode expressed it as profound energy storage material with of 484 F g−1 specific capacitance and specific power density of 1659 W kg−1. It is a highly durable and stable energy semiconductor for energy storage. |
---|---|
ISSN: | 1862-6300 1862-6319 |
DOI: | 10.1002/pssa.202400217 |