Loading…
In search of widening the electrochemical window of solid electrolytes for Li-batteries: the La0.29Li0.12+xM1−xZrxO3 (M = Nb, Ta) perovskite-type systems
All solid-state batteries (ASSBs) are required to address challenges of the last generation of Li-batteries such as advances in safety performance, energy density and battery life. Progress of Li-ASSBs requires the development of solid electrolytes with high Li-conductivity and wide electrochemical...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-10, Vol.12 (41), p.28247-28253 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | All solid-state batteries (ASSBs) are required to address challenges of the last generation of Li-batteries such as advances in safety performance, energy density and battery life. Progress of Li-ASSBs requires the development of solid electrolytes with high Li-conductivity and wide electrochemical window. The La(2/3)−xLi3xTiO3 (LLTO) oxides present the highest “bulk” Li-conductivity among the electrolytes with perovskite structure but present significant grain boundary effects that decrease the total conductivity and confer poor electrochemical stability. The oxides of the La(1/3)−xLi3xNbO3 system (LLNO) present slightly lower reduction voltages than the LLTO-oxides and similar values of total conductivity. We have studied the La0.29Li0.12+xNb1−xZrxO3 (LLNZO) and La0.29Li0.12+xTa1−xZrxO3 (LLTaZO) systems with the aim of increasing the Li-conductivity and electrochemical stability of perovskite-based electrolyte oxides. Conductivity values as high as in LLNO are found in the LLNZO system but somewhat lower in the LLTaZO system. However, the electrochemical window of these new solid electrolytes is remarkably wide, in particular in the La0.29Li0.17Ta0.95Zr0.05O3 compound, which is stable between 1.35 and 4.8 V vs. Li+/Li. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/d4ta05326e |