Loading…
Stochastic games with lexicographic objectives
We study turn-based stochastic zero-sum games with lexicographic preferences over objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both randomness as well as controllable and adversarial non-determinism. Lexicographi...
Saved in:
Published in: | Formal methods in system design 2024-10, Vol.63 (1-3), p.40-80 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study turn-based stochastic zero-sum games with lexicographic preferences over objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both randomness as well as controllable and adversarial non-determinism. Lexicographic order allows one to consider multiple objectives with a strict preference order. To the best of our knowledge, stochastic games with lexicographic objectives have not been studied before. For a mixture of reachability and safety objectives, we show that deterministic lexicographically optimal strategies exist and memory is only required to remember the already satisfied and violated objectives. For a constant number of objectives, we show that the relevant decision problem is in
NP
∩
coNP
, matching the current known bound for single objectives; and in general the decision problem is
PSPACE
-hard and can be solved in
NEXPTIME
∩
coNEXPTIME
. We present an algorithm that computes the lexicographically optimal strategies via a reduction to the computation of optimal strategies in a sequence of single-objectives games. For omega-regular objectives, we restrict our analysis to one-player games, also known as Markov decision processes. We show that lexicographically optimal strategies exist and need either randomization or finite memory. We present an algorithm that solves the relevant decision problem in polynomial time. We have implemented our algorithms and report experimental results on various case studies. |
---|---|
ISSN: | 0925-9856 1572-8102 |
DOI: | 10.1007/s10703-023-00411-4 |