Loading…

Iterative Methods via Locally Evolving Set Process

Given the damping factor \(\alpha\) and precision tolerance \(\epsilon\), \citet{andersen2006local} introduced Approximate Personalized PageRank (APPR), the \textit{de facto local method} for approximating the PPR vector, with runtime bounded by \(\Theta(1/(\alpha\epsilon))\) independent of the grap...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Zhou, Baojian, Sun, Yifan, Harikandeh, Reza Babanezhad, Guo, Xingzhi, Yang, Deqing, Xiao, Yanghua
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhou, Baojian
Sun, Yifan
Harikandeh, Reza Babanezhad
Guo, Xingzhi
Yang, Deqing
Xiao, Yanghua
description Given the damping factor \(\alpha\) and precision tolerance \(\epsilon\), \citet{andersen2006local} introduced Approximate Personalized PageRank (APPR), the \textit{de facto local method} for approximating the PPR vector, with runtime bounded by \(\Theta(1/(\alpha\epsilon))\) independent of the graph size. Recently, \citet{fountoulakis2022open} asked whether faster local algorithms could be developed using \(\tilde{O}(1/(\sqrt{\alpha}\epsilon))\) operations. By noticing that APPR is a local variant of Gauss-Seidel, this paper explores the question of \textit{whether standard iterative solvers can be effectively localized}. We propose to use the \textit{locally evolving set process}, a novel framework to characterize the algorithm locality, and demonstrate that many standard solvers can be effectively localized. Let \(\overline{\operatorname{vol}}{ (S_t)}\) and \(\overline{\gamma}_{t}\) be the running average of volume and the residual ratio of active nodes \(\textstyle S_{t}\) during the process. We show \(\overline{\operatorname{vol}}{ (S_t)}/\overline{\gamma}_{t} \leq 1/\epsilon\) and prove APPR admits a new runtime bound \(\tilde{O}(\overline{\operatorname{vol}}(S_t)/(\alpha\overline{\gamma}_{t}))\) mirroring the actual performance. Furthermore, when the geometric mean of residual reduction is \(\Theta(\sqrt{\alpha})\), then there exists \(c \in (0,2)\) such that the local Chebyshev method has runtime \(\tilde{O}(\overline{\operatorname{vol}}(S_{t})/(\sqrt{\alpha}(2-c)))\) without the monotonicity assumption. Numerical results confirm the efficiency of this novel framework and show up to a hundredfold speedup over corresponding standard solvers on real-world graphs.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119304575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119304575</sourcerecordid><originalsourceid>FETCH-proquest_journals_31193045753</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8ixJLUosySxLVfBNLcnITylWKMtMVPDJT07MyalUcC3LzynLzEtXCE4tUQgoyk9OLS7mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4Y0NDS2MDE1NzU2PiVAEAzcAzqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119304575</pqid></control><display><type>article</type><title>Iterative Methods via Locally Evolving Set Process</title><source>Publicly Available Content Database</source><creator>Zhou, Baojian ; Sun, Yifan ; Harikandeh, Reza Babanezhad ; Guo, Xingzhi ; Yang, Deqing ; Xiao, Yanghua</creator><creatorcontrib>Zhou, Baojian ; Sun, Yifan ; Harikandeh, Reza Babanezhad ; Guo, Xingzhi ; Yang, Deqing ; Xiao, Yanghua</creatorcontrib><description>Given the damping factor \(\alpha\) and precision tolerance \(\epsilon\), \citet{andersen2006local} introduced Approximate Personalized PageRank (APPR), the \textit{de facto local method} for approximating the PPR vector, with runtime bounded by \(\Theta(1/(\alpha\epsilon))\) independent of the graph size. Recently, \citet{fountoulakis2022open} asked whether faster local algorithms could be developed using \(\tilde{O}(1/(\sqrt{\alpha}\epsilon))\) operations. By noticing that APPR is a local variant of Gauss-Seidel, this paper explores the question of \textit{whether standard iterative solvers can be effectively localized}. We propose to use the \textit{locally evolving set process}, a novel framework to characterize the algorithm locality, and demonstrate that many standard solvers can be effectively localized. Let \(\overline{\operatorname{vol}}{ (S_t)}\) and \(\overline{\gamma}_{t}\) be the running average of volume and the residual ratio of active nodes \(\textstyle S_{t}\) during the process. We show \(\overline{\operatorname{vol}}{ (S_t)}/\overline{\gamma}_{t} \leq 1/\epsilon\) and prove APPR admits a new runtime bound \(\tilde{O}(\overline{\operatorname{vol}}(S_t)/(\alpha\overline{\gamma}_{t}))\) mirroring the actual performance. Furthermore, when the geometric mean of residual reduction is \(\Theta(\sqrt{\alpha})\), then there exists \(c \in (0,2)\) such that the local Chebyshev method has runtime \(\tilde{O}(\overline{\operatorname{vol}}(S_{t})/(\sqrt{\alpha}(2-c)))\) without the monotonicity assumption. Numerical results confirm the efficiency of this novel framework and show up to a hundredfold speedup over corresponding standard solvers on real-world graphs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Chebyshev approximation ; Damping ; Iterative methods ; Run time (computers) ; Solvers</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3119304575?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Zhou, Baojian</creatorcontrib><creatorcontrib>Sun, Yifan</creatorcontrib><creatorcontrib>Harikandeh, Reza Babanezhad</creatorcontrib><creatorcontrib>Guo, Xingzhi</creatorcontrib><creatorcontrib>Yang, Deqing</creatorcontrib><creatorcontrib>Xiao, Yanghua</creatorcontrib><title>Iterative Methods via Locally Evolving Set Process</title><title>arXiv.org</title><description>Given the damping factor \(\alpha\) and precision tolerance \(\epsilon\), \citet{andersen2006local} introduced Approximate Personalized PageRank (APPR), the \textit{de facto local method} for approximating the PPR vector, with runtime bounded by \(\Theta(1/(\alpha\epsilon))\) independent of the graph size. Recently, \citet{fountoulakis2022open} asked whether faster local algorithms could be developed using \(\tilde{O}(1/(\sqrt{\alpha}\epsilon))\) operations. By noticing that APPR is a local variant of Gauss-Seidel, this paper explores the question of \textit{whether standard iterative solvers can be effectively localized}. We propose to use the \textit{locally evolving set process}, a novel framework to characterize the algorithm locality, and demonstrate that many standard solvers can be effectively localized. Let \(\overline{\operatorname{vol}}{ (S_t)}\) and \(\overline{\gamma}_{t}\) be the running average of volume and the residual ratio of active nodes \(\textstyle S_{t}\) during the process. We show \(\overline{\operatorname{vol}}{ (S_t)}/\overline{\gamma}_{t} \leq 1/\epsilon\) and prove APPR admits a new runtime bound \(\tilde{O}(\overline{\operatorname{vol}}(S_t)/(\alpha\overline{\gamma}_{t}))\) mirroring the actual performance. Furthermore, when the geometric mean of residual reduction is \(\Theta(\sqrt{\alpha})\), then there exists \(c \in (0,2)\) such that the local Chebyshev method has runtime \(\tilde{O}(\overline{\operatorname{vol}}(S_{t})/(\sqrt{\alpha}(2-c)))\) without the monotonicity assumption. Numerical results confirm the efficiency of this novel framework and show up to a hundredfold speedup over corresponding standard solvers on real-world graphs.</description><subject>Algorithms</subject><subject>Chebyshev approximation</subject><subject>Damping</subject><subject>Iterative methods</subject><subject>Run time (computers)</subject><subject>Solvers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8ixJLUosySxLVfBNLcnITylWKMtMVPDJT07MyalUcC3LzynLzEtXCE4tUQgoyk9OLS7mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4Y0NDS2MDE1NzU2PiVAEAzcAzqQ</recordid><startdate>20241019</startdate><enddate>20241019</enddate><creator>Zhou, Baojian</creator><creator>Sun, Yifan</creator><creator>Harikandeh, Reza Babanezhad</creator><creator>Guo, Xingzhi</creator><creator>Yang, Deqing</creator><creator>Xiao, Yanghua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241019</creationdate><title>Iterative Methods via Locally Evolving Set Process</title><author>Zhou, Baojian ; Sun, Yifan ; Harikandeh, Reza Babanezhad ; Guo, Xingzhi ; Yang, Deqing ; Xiao, Yanghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31193045753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Chebyshev approximation</topic><topic>Damping</topic><topic>Iterative methods</topic><topic>Run time (computers)</topic><topic>Solvers</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Baojian</creatorcontrib><creatorcontrib>Sun, Yifan</creatorcontrib><creatorcontrib>Harikandeh, Reza Babanezhad</creatorcontrib><creatorcontrib>Guo, Xingzhi</creatorcontrib><creatorcontrib>Yang, Deqing</creatorcontrib><creatorcontrib>Xiao, Yanghua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Baojian</au><au>Sun, Yifan</au><au>Harikandeh, Reza Babanezhad</au><au>Guo, Xingzhi</au><au>Yang, Deqing</au><au>Xiao, Yanghua</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Iterative Methods via Locally Evolving Set Process</atitle><jtitle>arXiv.org</jtitle><date>2024-10-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Given the damping factor \(\alpha\) and precision tolerance \(\epsilon\), \citet{andersen2006local} introduced Approximate Personalized PageRank (APPR), the \textit{de facto local method} for approximating the PPR vector, with runtime bounded by \(\Theta(1/(\alpha\epsilon))\) independent of the graph size. Recently, \citet{fountoulakis2022open} asked whether faster local algorithms could be developed using \(\tilde{O}(1/(\sqrt{\alpha}\epsilon))\) operations. By noticing that APPR is a local variant of Gauss-Seidel, this paper explores the question of \textit{whether standard iterative solvers can be effectively localized}. We propose to use the \textit{locally evolving set process}, a novel framework to characterize the algorithm locality, and demonstrate that many standard solvers can be effectively localized. Let \(\overline{\operatorname{vol}}{ (S_t)}\) and \(\overline{\gamma}_{t}\) be the running average of volume and the residual ratio of active nodes \(\textstyle S_{t}\) during the process. We show \(\overline{\operatorname{vol}}{ (S_t)}/\overline{\gamma}_{t} \leq 1/\epsilon\) and prove APPR admits a new runtime bound \(\tilde{O}(\overline{\operatorname{vol}}(S_t)/(\alpha\overline{\gamma}_{t}))\) mirroring the actual performance. Furthermore, when the geometric mean of residual reduction is \(\Theta(\sqrt{\alpha})\), then there exists \(c \in (0,2)\) such that the local Chebyshev method has runtime \(\tilde{O}(\overline{\operatorname{vol}}(S_{t})/(\sqrt{\alpha}(2-c)))\) without the monotonicity assumption. Numerical results confirm the efficiency of this novel framework and show up to a hundredfold speedup over corresponding standard solvers on real-world graphs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3119304575
source Publicly Available Content Database
subjects Algorithms
Chebyshev approximation
Damping
Iterative methods
Run time (computers)
Solvers
title Iterative Methods via Locally Evolving Set Process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Iterative%20Methods%20via%20Locally%20Evolving%20Set%20Process&rft.jtitle=arXiv.org&rft.au=Zhou,%20Baojian&rft.date=2024-10-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3119304575%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31193045753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3119304575&rft_id=info:pmid/&rfr_iscdi=true