Loading…
A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications
With the rapid advancement of large language models (LLMs), aligning policy models with human preferences has become increasingly critical. Direct Preference Optimization (DPO) has emerged as a promising approach for alignment, acting as an RL-free alternative to Reinforcement Learning from Human Fe...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xiao, Wenyi Wang, Zechuan Gan, Leilei Zhao, Shuai He, Wanggui Luu, Anh Tuan Long, Chen Jiang, Hao Zhou, Zhao Wu, Fei |
description | With the rapid advancement of large language models (LLMs), aligning policy models with human preferences has become increasingly critical. Direct Preference Optimization (DPO) has emerged as a promising approach for alignment, acting as an RL-free alternative to Reinforcement Learning from Human Feedback (RLHF). Despite DPO's various advancements and inherent limitations, an in-depth review of these aspects is currently lacking in the literature. In this work, we present a comprehensive review of the challenges and opportunities in DPO, covering theoretical analyses, variants, relevant preference datasets, and applications. Specifically, we categorize recent studies on DPO based on key research questions to provide a thorough understanding of DPO's current landscape. Additionally, we propose several future research directions to offer insights on model alignment for the research community. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119305760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119305760</sourcerecordid><originalsourceid>FETCH-proquest_journals_31193057603</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgKNp_GHCrkCbWqjvxgTsFi1sJdUpTNImTtKBfbxU_wNW5nHs6rC-kjCfzqRA9Fnlfcc7FLBVJIvusXMHa3h1hicbrBuFUU4NPsAVsNGEe4EhYIKHJEQ4u6Lt-qaCtWcJGBeUx-DFkJVrS2K6zIq3MxylzhZVzN51_cz9k3ULdPEY_Dthot83W-4kj-6jRh0tlazLtdZFxvJA8SWdc_le9AS0zR4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119305760</pqid></control><display><type>article</type><title>A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Xiao, Wenyi ; Wang, Zechuan ; Gan, Leilei ; Zhao, Shuai ; He, Wanggui ; Luu, Anh Tuan ; Long, Chen ; Jiang, Hao ; Zhou, Zhao ; Wu, Fei</creator><creatorcontrib>Xiao, Wenyi ; Wang, Zechuan ; Gan, Leilei ; Zhao, Shuai ; He, Wanggui ; Luu, Anh Tuan ; Long, Chen ; Jiang, Hao ; Zhou, Zhao ; Wu, Fei</creatorcontrib><description>With the rapid advancement of large language models (LLMs), aligning policy models with human preferences has become increasingly critical. Direct Preference Optimization (DPO) has emerged as a promising approach for alignment, acting as an RL-free alternative to Reinforcement Learning from Human Feedback (RLHF). Despite DPO's various advancements and inherent limitations, an in-depth review of these aspects is currently lacking in the literature. In this work, we present a comprehensive review of the challenges and opportunities in DPO, covering theoretical analyses, variants, relevant preference datasets, and applications. Specifically, we categorize recent studies on DPO based on key research questions to provide a thorough understanding of DPO's current landscape. Additionally, we propose several future research directions to offer insights on model alignment for the research community.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alignment ; Datasets ; Large language models ; Optimization</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3119305760?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Xiao, Wenyi</creatorcontrib><creatorcontrib>Wang, Zechuan</creatorcontrib><creatorcontrib>Gan, Leilei</creatorcontrib><creatorcontrib>Zhao, Shuai</creatorcontrib><creatorcontrib>He, Wanggui</creatorcontrib><creatorcontrib>Luu, Anh Tuan</creatorcontrib><creatorcontrib>Long, Chen</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Zhou, Zhao</creatorcontrib><creatorcontrib>Wu, Fei</creatorcontrib><title>A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications</title><title>arXiv.org</title><description>With the rapid advancement of large language models (LLMs), aligning policy models with human preferences has become increasingly critical. Direct Preference Optimization (DPO) has emerged as a promising approach for alignment, acting as an RL-free alternative to Reinforcement Learning from Human Feedback (RLHF). Despite DPO's various advancements and inherent limitations, an in-depth review of these aspects is currently lacking in the literature. In this work, we present a comprehensive review of the challenges and opportunities in DPO, covering theoretical analyses, variants, relevant preference datasets, and applications. Specifically, we categorize recent studies on DPO based on key research questions to provide a thorough understanding of DPO's current landscape. Additionally, we propose several future research directions to offer insights on model alignment for the research community.</description><subject>Alignment</subject><subject>Datasets</subject><subject>Large language models</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNissKwjAQRYMgKNp_GHCrkCbWqjvxgTsFi1sJdUpTNImTtKBfbxU_wNW5nHs6rC-kjCfzqRA9Fnlfcc7FLBVJIvusXMHa3h1hicbrBuFUU4NPsAVsNGEe4EhYIKHJEQ4u6Lt-qaCtWcJGBeUx-DFkJVrS2K6zIq3MxylzhZVzN51_cz9k3ULdPEY_Dthot83W-4kj-6jRh0tlazLtdZFxvJA8SWdc_le9AS0zR4w</recordid><startdate>20241110</startdate><enddate>20241110</enddate><creator>Xiao, Wenyi</creator><creator>Wang, Zechuan</creator><creator>Gan, Leilei</creator><creator>Zhao, Shuai</creator><creator>He, Wanggui</creator><creator>Luu, Anh Tuan</creator><creator>Long, Chen</creator><creator>Jiang, Hao</creator><creator>Zhou, Zhao</creator><creator>Wu, Fei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241110</creationdate><title>A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications</title><author>Xiao, Wenyi ; Wang, Zechuan ; Gan, Leilei ; Zhao, Shuai ; He, Wanggui ; Luu, Anh Tuan ; Long, Chen ; Jiang, Hao ; Zhou, Zhao ; Wu, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31193057603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alignment</topic><topic>Datasets</topic><topic>Large language models</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Wenyi</creatorcontrib><creatorcontrib>Wang, Zechuan</creatorcontrib><creatorcontrib>Gan, Leilei</creatorcontrib><creatorcontrib>Zhao, Shuai</creatorcontrib><creatorcontrib>He, Wanggui</creatorcontrib><creatorcontrib>Luu, Anh Tuan</creatorcontrib><creatorcontrib>Long, Chen</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Zhou, Zhao</creatorcontrib><creatorcontrib>Wu, Fei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Wenyi</au><au>Wang, Zechuan</au><au>Gan, Leilei</au><au>Zhao, Shuai</au><au>He, Wanggui</au><au>Luu, Anh Tuan</au><au>Long, Chen</au><au>Jiang, Hao</au><au>Zhou, Zhao</au><au>Wu, Fei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications</atitle><jtitle>arXiv.org</jtitle><date>2024-11-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>With the rapid advancement of large language models (LLMs), aligning policy models with human preferences has become increasingly critical. Direct Preference Optimization (DPO) has emerged as a promising approach for alignment, acting as an RL-free alternative to Reinforcement Learning from Human Feedback (RLHF). Despite DPO's various advancements and inherent limitations, an in-depth review of these aspects is currently lacking in the literature. In this work, we present a comprehensive review of the challenges and opportunities in DPO, covering theoretical analyses, variants, relevant preference datasets, and applications. Specifically, we categorize recent studies on DPO based on key research questions to provide a thorough understanding of DPO's current landscape. Additionally, we propose several future research directions to offer insights on model alignment for the research community.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3119305760 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Alignment Datasets Large language models Optimization |
title | A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Comprehensive%20Survey%20of%20Direct%20Preference%20Optimization:%20Datasets,%20Theories,%20Variants,%20and%20Applications&rft.jtitle=arXiv.org&rft.au=Xiao,%20Wenyi&rft.date=2024-11-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3119305760%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31193057603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3119305760&rft_id=info:pmid/&rfr_iscdi=true |