Loading…

A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications

With the rapid advancement of large language models (LLMs), aligning policy models with human preferences has become increasingly critical. Direct Preference Optimization (DPO) has emerged as a promising approach for alignment, acting as an RL-free alternative to Reinforcement Learning from Human Fe...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-11
Main Authors: Xiao, Wenyi, Wang, Zechuan, Gan, Leilei, Zhao, Shuai, He, Wanggui, Luu, Anh Tuan, Long, Chen, Jiang, Hao, Zhou, Zhao, Wu, Fei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xiao, Wenyi
Wang, Zechuan
Gan, Leilei
Zhao, Shuai
He, Wanggui
Luu, Anh Tuan
Long, Chen
Jiang, Hao
Zhou, Zhao
Wu, Fei
description With the rapid advancement of large language models (LLMs), aligning policy models with human preferences has become increasingly critical. Direct Preference Optimization (DPO) has emerged as a promising approach for alignment, acting as an RL-free alternative to Reinforcement Learning from Human Feedback (RLHF). Despite DPO's various advancements and inherent limitations, an in-depth review of these aspects is currently lacking in the literature. In this work, we present a comprehensive review of the challenges and opportunities in DPO, covering theoretical analyses, variants, relevant preference datasets, and applications. Specifically, we categorize recent studies on DPO based on key research questions to provide a thorough understanding of DPO's current landscape. Additionally, we propose several future research directions to offer insights on model alignment for the research community.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119305760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119305760</sourcerecordid><originalsourceid>FETCH-proquest_journals_31193057603</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgKNp_GHCrkCbWqjvxgTsFi1sJdUpTNImTtKBfbxU_wNW5nHs6rC-kjCfzqRA9Fnlfcc7FLBVJIvusXMHa3h1hicbrBuFUU4NPsAVsNGEe4EhYIKHJEQ4u6Lt-qaCtWcJGBeUx-DFkJVrS2K6zIq3MxylzhZVzN51_cz9k3ULdPEY_Dthot83W-4kj-6jRh0tlazLtdZFxvJA8SWdc_le9AS0zR4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119305760</pqid></control><display><type>article</type><title>A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Xiao, Wenyi ; Wang, Zechuan ; Gan, Leilei ; Zhao, Shuai ; He, Wanggui ; Luu, Anh Tuan ; Long, Chen ; Jiang, Hao ; Zhou, Zhao ; Wu, Fei</creator><creatorcontrib>Xiao, Wenyi ; Wang, Zechuan ; Gan, Leilei ; Zhao, Shuai ; He, Wanggui ; Luu, Anh Tuan ; Long, Chen ; Jiang, Hao ; Zhou, Zhao ; Wu, Fei</creatorcontrib><description>With the rapid advancement of large language models (LLMs), aligning policy models with human preferences has become increasingly critical. Direct Preference Optimization (DPO) has emerged as a promising approach for alignment, acting as an RL-free alternative to Reinforcement Learning from Human Feedback (RLHF). Despite DPO's various advancements and inherent limitations, an in-depth review of these aspects is currently lacking in the literature. In this work, we present a comprehensive review of the challenges and opportunities in DPO, covering theoretical analyses, variants, relevant preference datasets, and applications. Specifically, we categorize recent studies on DPO based on key research questions to provide a thorough understanding of DPO's current landscape. Additionally, we propose several future research directions to offer insights on model alignment for the research community.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alignment ; Datasets ; Large language models ; Optimization</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3119305760?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Xiao, Wenyi</creatorcontrib><creatorcontrib>Wang, Zechuan</creatorcontrib><creatorcontrib>Gan, Leilei</creatorcontrib><creatorcontrib>Zhao, Shuai</creatorcontrib><creatorcontrib>He, Wanggui</creatorcontrib><creatorcontrib>Luu, Anh Tuan</creatorcontrib><creatorcontrib>Long, Chen</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Zhou, Zhao</creatorcontrib><creatorcontrib>Wu, Fei</creatorcontrib><title>A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications</title><title>arXiv.org</title><description>With the rapid advancement of large language models (LLMs), aligning policy models with human preferences has become increasingly critical. Direct Preference Optimization (DPO) has emerged as a promising approach for alignment, acting as an RL-free alternative to Reinforcement Learning from Human Feedback (RLHF). Despite DPO's various advancements and inherent limitations, an in-depth review of these aspects is currently lacking in the literature. In this work, we present a comprehensive review of the challenges and opportunities in DPO, covering theoretical analyses, variants, relevant preference datasets, and applications. Specifically, we categorize recent studies on DPO based on key research questions to provide a thorough understanding of DPO's current landscape. Additionally, we propose several future research directions to offer insights on model alignment for the research community.</description><subject>Alignment</subject><subject>Datasets</subject><subject>Large language models</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNissKwjAQRYMgKNp_GHCrkCbWqjvxgTsFi1sJdUpTNImTtKBfbxU_wNW5nHs6rC-kjCfzqRA9Fnlfcc7FLBVJIvusXMHa3h1hicbrBuFUU4NPsAVsNGEe4EhYIKHJEQ4u6Lt-qaCtWcJGBeUx-DFkJVrS2K6zIq3MxylzhZVzN51_cz9k3ULdPEY_Dthot83W-4kj-6jRh0tlazLtdZFxvJA8SWdc_le9AS0zR4w</recordid><startdate>20241110</startdate><enddate>20241110</enddate><creator>Xiao, Wenyi</creator><creator>Wang, Zechuan</creator><creator>Gan, Leilei</creator><creator>Zhao, Shuai</creator><creator>He, Wanggui</creator><creator>Luu, Anh Tuan</creator><creator>Long, Chen</creator><creator>Jiang, Hao</creator><creator>Zhou, Zhao</creator><creator>Wu, Fei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241110</creationdate><title>A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications</title><author>Xiao, Wenyi ; Wang, Zechuan ; Gan, Leilei ; Zhao, Shuai ; He, Wanggui ; Luu, Anh Tuan ; Long, Chen ; Jiang, Hao ; Zhou, Zhao ; Wu, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31193057603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alignment</topic><topic>Datasets</topic><topic>Large language models</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Wenyi</creatorcontrib><creatorcontrib>Wang, Zechuan</creatorcontrib><creatorcontrib>Gan, Leilei</creatorcontrib><creatorcontrib>Zhao, Shuai</creatorcontrib><creatorcontrib>He, Wanggui</creatorcontrib><creatorcontrib>Luu, Anh Tuan</creatorcontrib><creatorcontrib>Long, Chen</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Zhou, Zhao</creatorcontrib><creatorcontrib>Wu, Fei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Wenyi</au><au>Wang, Zechuan</au><au>Gan, Leilei</au><au>Zhao, Shuai</au><au>He, Wanggui</au><au>Luu, Anh Tuan</au><au>Long, Chen</au><au>Jiang, Hao</au><au>Zhou, Zhao</au><au>Wu, Fei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications</atitle><jtitle>arXiv.org</jtitle><date>2024-11-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>With the rapid advancement of large language models (LLMs), aligning policy models with human preferences has become increasingly critical. Direct Preference Optimization (DPO) has emerged as a promising approach for alignment, acting as an RL-free alternative to Reinforcement Learning from Human Feedback (RLHF). Despite DPO's various advancements and inherent limitations, an in-depth review of these aspects is currently lacking in the literature. In this work, we present a comprehensive review of the challenges and opportunities in DPO, covering theoretical analyses, variants, relevant preference datasets, and applications. Specifically, we categorize recent studies on DPO based on key research questions to provide a thorough understanding of DPO's current landscape. Additionally, we propose several future research directions to offer insights on model alignment for the research community.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3119305760
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Alignment
Datasets
Large language models
Optimization
title A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Comprehensive%20Survey%20of%20Direct%20Preference%20Optimization:%20Datasets,%20Theories,%20Variants,%20and%20Applications&rft.jtitle=arXiv.org&rft.au=Xiao,%20Wenyi&rft.date=2024-11-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3119305760%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31193057603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3119305760&rft_id=info:pmid/&rfr_iscdi=true