Loading…

A 300 mm foundry silicon spin qubit unit cell exceeding 99% fidelity in all operations

Fabrication of quantum processors in advanced 300 mm wafer-scale complementary metal-oxide-semiconductor (CMOS) foundries provides a unique scaling pathway towards commercially viable quantum computing with potentially millions of qubits on a single chip. Here, we show precise qubit operation of a s...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Steinacker, Paul, Nard Dumoulin Stuyck, Wee Han Lim, Tanttu, Tuomo, Feng, MengKe, Nickl, Andreas, Serrano, Santiago, Candido, Marco, Cifuentes, Jesus D, Hudson, Fay E, Chan, Kok Wai, Kubicek, Stefan, Jussot, Julien, Canvel, Yann, Beyne, Sofie, Shimura, Yosuke, Loo, Roger, Godfrin, Clement, Raes, Bart, Baudot, Sylvain, Wan, Danny, Laucht, Arne, Yang, Chih Hwan, Saraiva, Andre, Escott, Christopher C, De Greve, Kristiaan, Dzurak, Andrew S
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Steinacker, Paul
Nard Dumoulin Stuyck
Wee Han Lim
Tanttu, Tuomo
Feng, MengKe
Nickl, Andreas
Serrano, Santiago
Candido, Marco
Cifuentes, Jesus D
Hudson, Fay E
Chan, Kok Wai
Kubicek, Stefan
Jussot, Julien
Canvel, Yann
Beyne, Sofie
Shimura, Yosuke
Loo, Roger
Godfrin, Clement
Raes, Bart
Baudot, Sylvain
Wan, Danny
Laucht, Arne
Yang, Chih Hwan
Saraiva, Andre
Escott, Christopher C
De Greve, Kristiaan
Dzurak, Andrew S
description Fabrication of quantum processors in advanced 300 mm wafer-scale complementary metal-oxide-semiconductor (CMOS) foundries provides a unique scaling pathway towards commercially viable quantum computing with potentially millions of qubits on a single chip. Here, we show precise qubit operation of a silicon two-qubit device made in a 300 mm semiconductor processing line. The key metrics including single- and two-qubit control fidelities exceed 99% and state preparation and measurement fidelity exceeds 99.9%, as evidenced by gate set tomography (GST). We report coherence and lifetimes up to \(T_\mathrm{2}^{\mathrm{*}} = 30.4\) \(\mu\)s, \(T_\mathrm{2}^{\mathrm{Hahn}} = 803\) \(\mu\)s, and \(T_1 = 6.3\) s. Crucially, the dominant operational errors originate from residual nuclear spin carrying isotopes, solvable with further isotopic purification, rather than charge noise arising from the dielectric environment. Our results answer the longstanding question whether the favourable properties including high-fidelity operation and long coherence times can be preserved when transitioning from a tailored academic to an industrial semiconductor fabrication technology.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119331757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119331757</sourcerecordid><originalsourceid>FETCH-proquest_journals_31193317573</originalsourceid><addsrcrecordid>eNqNjksKwjAURYMgWLR7eCAOC2lirR2KKC5AnEptX-WVNGnzAbt7M3ABTu4ZnDO4C5YIKfPsuBdixVLnes65OJSiKGTCHieQnMMwQGeCbu0MjhQ1RoMbScMUXuQh6DgNKgX4aRBb0m-oqh101KIiP0Ms62jNiLb2ZLTbsGVXK4fpj2u2vV7u51s2WjMFdP7Zm2B1VE-Z51X8Vxal_K_6AiS6P8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119331757</pqid></control><display><type>article</type><title>A 300 mm foundry silicon spin qubit unit cell exceeding 99% fidelity in all operations</title><source>Publicly Available Content Database</source><creator>Steinacker, Paul ; Nard Dumoulin Stuyck ; Wee Han Lim ; Tanttu, Tuomo ; Feng, MengKe ; Nickl, Andreas ; Serrano, Santiago ; Candido, Marco ; Cifuentes, Jesus D ; Hudson, Fay E ; Chan, Kok Wai ; Kubicek, Stefan ; Jussot, Julien ; Canvel, Yann ; Beyne, Sofie ; Shimura, Yosuke ; Loo, Roger ; Godfrin, Clement ; Raes, Bart ; Baudot, Sylvain ; Wan, Danny ; Laucht, Arne ; Yang, Chih Hwan ; Saraiva, Andre ; Escott, Christopher C ; De Greve, Kristiaan ; Dzurak, Andrew S</creator><creatorcontrib>Steinacker, Paul ; Nard Dumoulin Stuyck ; Wee Han Lim ; Tanttu, Tuomo ; Feng, MengKe ; Nickl, Andreas ; Serrano, Santiago ; Candido, Marco ; Cifuentes, Jesus D ; Hudson, Fay E ; Chan, Kok Wai ; Kubicek, Stefan ; Jussot, Julien ; Canvel, Yann ; Beyne, Sofie ; Shimura, Yosuke ; Loo, Roger ; Godfrin, Clement ; Raes, Bart ; Baudot, Sylvain ; Wan, Danny ; Laucht, Arne ; Yang, Chih Hwan ; Saraiva, Andre ; Escott, Christopher C ; De Greve, Kristiaan ; Dzurak, Andrew S</creatorcontrib><description>Fabrication of quantum processors in advanced 300 mm wafer-scale complementary metal-oxide-semiconductor (CMOS) foundries provides a unique scaling pathway towards commercially viable quantum computing with potentially millions of qubits on a single chip. Here, we show precise qubit operation of a silicon two-qubit device made in a 300 mm semiconductor processing line. The key metrics including single- and two-qubit control fidelities exceed 99% and state preparation and measurement fidelity exceeds 99.9%, as evidenced by gate set tomography (GST). We report coherence and lifetimes up to \(T_\mathrm{2}^{\mathrm{*}} = 30.4\) \(\mu\)s, \(T_\mathrm{2}^{\mathrm{Hahn}} = 803\) \(\mu\)s, and \(T_1 = 6.3\) s. Crucially, the dominant operational errors originate from residual nuclear spin carrying isotopes, solvable with further isotopic purification, rather than charge noise arising from the dielectric environment. Our results answer the longstanding question whether the favourable properties including high-fidelity operation and long coherence times can be preserved when transitioning from a tailored academic to an industrial semiconductor fabrication technology.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; CMOS ; Coherence ; Current carriers ; Foundries ; Nuclear spin ; Plant layout ; Quantum computing ; Qubits (quantum computing) ; Scale (corrosion) ; Silicon ; Unit cell</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3119331757?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Steinacker, Paul</creatorcontrib><creatorcontrib>Nard Dumoulin Stuyck</creatorcontrib><creatorcontrib>Wee Han Lim</creatorcontrib><creatorcontrib>Tanttu, Tuomo</creatorcontrib><creatorcontrib>Feng, MengKe</creatorcontrib><creatorcontrib>Nickl, Andreas</creatorcontrib><creatorcontrib>Serrano, Santiago</creatorcontrib><creatorcontrib>Candido, Marco</creatorcontrib><creatorcontrib>Cifuentes, Jesus D</creatorcontrib><creatorcontrib>Hudson, Fay E</creatorcontrib><creatorcontrib>Chan, Kok Wai</creatorcontrib><creatorcontrib>Kubicek, Stefan</creatorcontrib><creatorcontrib>Jussot, Julien</creatorcontrib><creatorcontrib>Canvel, Yann</creatorcontrib><creatorcontrib>Beyne, Sofie</creatorcontrib><creatorcontrib>Shimura, Yosuke</creatorcontrib><creatorcontrib>Loo, Roger</creatorcontrib><creatorcontrib>Godfrin, Clement</creatorcontrib><creatorcontrib>Raes, Bart</creatorcontrib><creatorcontrib>Baudot, Sylvain</creatorcontrib><creatorcontrib>Wan, Danny</creatorcontrib><creatorcontrib>Laucht, Arne</creatorcontrib><creatorcontrib>Yang, Chih Hwan</creatorcontrib><creatorcontrib>Saraiva, Andre</creatorcontrib><creatorcontrib>Escott, Christopher C</creatorcontrib><creatorcontrib>De Greve, Kristiaan</creatorcontrib><creatorcontrib>Dzurak, Andrew S</creatorcontrib><title>A 300 mm foundry silicon spin qubit unit cell exceeding 99% fidelity in all operations</title><title>arXiv.org</title><description>Fabrication of quantum processors in advanced 300 mm wafer-scale complementary metal-oxide-semiconductor (CMOS) foundries provides a unique scaling pathway towards commercially viable quantum computing with potentially millions of qubits on a single chip. Here, we show precise qubit operation of a silicon two-qubit device made in a 300 mm semiconductor processing line. The key metrics including single- and two-qubit control fidelities exceed 99% and state preparation and measurement fidelity exceeds 99.9%, as evidenced by gate set tomography (GST). We report coherence and lifetimes up to \(T_\mathrm{2}^{\mathrm{*}} = 30.4\) \(\mu\)s, \(T_\mathrm{2}^{\mathrm{Hahn}} = 803\) \(\mu\)s, and \(T_1 = 6.3\) s. Crucially, the dominant operational errors originate from residual nuclear spin carrying isotopes, solvable with further isotopic purification, rather than charge noise arising from the dielectric environment. Our results answer the longstanding question whether the favourable properties including high-fidelity operation and long coherence times can be preserved when transitioning from a tailored academic to an industrial semiconductor fabrication technology.</description><subject>Accuracy</subject><subject>CMOS</subject><subject>Coherence</subject><subject>Current carriers</subject><subject>Foundries</subject><subject>Nuclear spin</subject><subject>Plant layout</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Scale (corrosion)</subject><subject>Silicon</subject><subject>Unit cell</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjksKwjAURYMgWLR7eCAOC2lirR2KKC5AnEptX-WVNGnzAbt7M3ABTu4ZnDO4C5YIKfPsuBdixVLnes65OJSiKGTCHieQnMMwQGeCbu0MjhQ1RoMbScMUXuQh6DgNKgX4aRBb0m-oqh101KIiP0Ms62jNiLb2ZLTbsGVXK4fpj2u2vV7u51s2WjMFdP7Zm2B1VE-Z51X8Vxal_K_6AiS6P8E</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>Steinacker, Paul</creator><creator>Nard Dumoulin Stuyck</creator><creator>Wee Han Lim</creator><creator>Tanttu, Tuomo</creator><creator>Feng, MengKe</creator><creator>Nickl, Andreas</creator><creator>Serrano, Santiago</creator><creator>Candido, Marco</creator><creator>Cifuentes, Jesus D</creator><creator>Hudson, Fay E</creator><creator>Chan, Kok Wai</creator><creator>Kubicek, Stefan</creator><creator>Jussot, Julien</creator><creator>Canvel, Yann</creator><creator>Beyne, Sofie</creator><creator>Shimura, Yosuke</creator><creator>Loo, Roger</creator><creator>Godfrin, Clement</creator><creator>Raes, Bart</creator><creator>Baudot, Sylvain</creator><creator>Wan, Danny</creator><creator>Laucht, Arne</creator><creator>Yang, Chih Hwan</creator><creator>Saraiva, Andre</creator><creator>Escott, Christopher C</creator><creator>De Greve, Kristiaan</creator><creator>Dzurak, Andrew S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241025</creationdate><title>A 300 mm foundry silicon spin qubit unit cell exceeding 99% fidelity in all operations</title><author>Steinacker, Paul ; Nard Dumoulin Stuyck ; Wee Han Lim ; Tanttu, Tuomo ; Feng, MengKe ; Nickl, Andreas ; Serrano, Santiago ; Candido, Marco ; Cifuentes, Jesus D ; Hudson, Fay E ; Chan, Kok Wai ; Kubicek, Stefan ; Jussot, Julien ; Canvel, Yann ; Beyne, Sofie ; Shimura, Yosuke ; Loo, Roger ; Godfrin, Clement ; Raes, Bart ; Baudot, Sylvain ; Wan, Danny ; Laucht, Arne ; Yang, Chih Hwan ; Saraiva, Andre ; Escott, Christopher C ; De Greve, Kristiaan ; Dzurak, Andrew S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31193317573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>CMOS</topic><topic>Coherence</topic><topic>Current carriers</topic><topic>Foundries</topic><topic>Nuclear spin</topic><topic>Plant layout</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Scale (corrosion)</topic><topic>Silicon</topic><topic>Unit cell</topic><toplevel>online_resources</toplevel><creatorcontrib>Steinacker, Paul</creatorcontrib><creatorcontrib>Nard Dumoulin Stuyck</creatorcontrib><creatorcontrib>Wee Han Lim</creatorcontrib><creatorcontrib>Tanttu, Tuomo</creatorcontrib><creatorcontrib>Feng, MengKe</creatorcontrib><creatorcontrib>Nickl, Andreas</creatorcontrib><creatorcontrib>Serrano, Santiago</creatorcontrib><creatorcontrib>Candido, Marco</creatorcontrib><creatorcontrib>Cifuentes, Jesus D</creatorcontrib><creatorcontrib>Hudson, Fay E</creatorcontrib><creatorcontrib>Chan, Kok Wai</creatorcontrib><creatorcontrib>Kubicek, Stefan</creatorcontrib><creatorcontrib>Jussot, Julien</creatorcontrib><creatorcontrib>Canvel, Yann</creatorcontrib><creatorcontrib>Beyne, Sofie</creatorcontrib><creatorcontrib>Shimura, Yosuke</creatorcontrib><creatorcontrib>Loo, Roger</creatorcontrib><creatorcontrib>Godfrin, Clement</creatorcontrib><creatorcontrib>Raes, Bart</creatorcontrib><creatorcontrib>Baudot, Sylvain</creatorcontrib><creatorcontrib>Wan, Danny</creatorcontrib><creatorcontrib>Laucht, Arne</creatorcontrib><creatorcontrib>Yang, Chih Hwan</creatorcontrib><creatorcontrib>Saraiva, Andre</creatorcontrib><creatorcontrib>Escott, Christopher C</creatorcontrib><creatorcontrib>De Greve, Kristiaan</creatorcontrib><creatorcontrib>Dzurak, Andrew S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinacker, Paul</au><au>Nard Dumoulin Stuyck</au><au>Wee Han Lim</au><au>Tanttu, Tuomo</au><au>Feng, MengKe</au><au>Nickl, Andreas</au><au>Serrano, Santiago</au><au>Candido, Marco</au><au>Cifuentes, Jesus D</au><au>Hudson, Fay E</au><au>Chan, Kok Wai</au><au>Kubicek, Stefan</au><au>Jussot, Julien</au><au>Canvel, Yann</au><au>Beyne, Sofie</au><au>Shimura, Yosuke</au><au>Loo, Roger</au><au>Godfrin, Clement</au><au>Raes, Bart</au><au>Baudot, Sylvain</au><au>Wan, Danny</au><au>Laucht, Arne</au><au>Yang, Chih Hwan</au><au>Saraiva, Andre</au><au>Escott, Christopher C</au><au>De Greve, Kristiaan</au><au>Dzurak, Andrew S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A 300 mm foundry silicon spin qubit unit cell exceeding 99% fidelity in all operations</atitle><jtitle>arXiv.org</jtitle><date>2024-10-25</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Fabrication of quantum processors in advanced 300 mm wafer-scale complementary metal-oxide-semiconductor (CMOS) foundries provides a unique scaling pathway towards commercially viable quantum computing with potentially millions of qubits on a single chip. Here, we show precise qubit operation of a silicon two-qubit device made in a 300 mm semiconductor processing line. The key metrics including single- and two-qubit control fidelities exceed 99% and state preparation and measurement fidelity exceeds 99.9%, as evidenced by gate set tomography (GST). We report coherence and lifetimes up to \(T_\mathrm{2}^{\mathrm{*}} = 30.4\) \(\mu\)s, \(T_\mathrm{2}^{\mathrm{Hahn}} = 803\) \(\mu\)s, and \(T_1 = 6.3\) s. Crucially, the dominant operational errors originate from residual nuclear spin carrying isotopes, solvable with further isotopic purification, rather than charge noise arising from the dielectric environment. Our results answer the longstanding question whether the favourable properties including high-fidelity operation and long coherence times can be preserved when transitioning from a tailored academic to an industrial semiconductor fabrication technology.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3119331757
source Publicly Available Content Database
subjects Accuracy
CMOS
Coherence
Current carriers
Foundries
Nuclear spin
Plant layout
Quantum computing
Qubits (quantum computing)
Scale (corrosion)
Silicon
Unit cell
title A 300 mm foundry silicon spin qubit unit cell exceeding 99% fidelity in all operations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20300%20mm%20foundry%20silicon%20spin%20qubit%20unit%20cell%20exceeding%2099%25%20fidelity%20in%20all%20operations&rft.jtitle=arXiv.org&rft.au=Steinacker,%20Paul&rft.date=2024-10-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3119331757%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31193317573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3119331757&rft_id=info:pmid/&rfr_iscdi=true