Loading…
Graphene Nanoplatelets/Polylactic Acid Conductive Polymer Composites: Tensile, Thermal and Electrical Properties
Conductive polymer composites (CPC) are gaining increasing popularity due to their unique characteristics, which include light weight and the ability to conduct electricity. In this work, CPC were prepared by blending the polylactic acid (PLA) with a conductive filler, graphene nanoplatelets (GNP),...
Saved in:
Published in: | Chemical engineering & technology 2024-11, Vol.47 (11), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2022-39bd63614e8517496fe45bb10b978fc9af4beb33ebedc908f15de7083f68f4543 |
container_end_page | n/a |
container_issue | 11 |
container_start_page | |
container_title | Chemical engineering & technology |
container_volume | 47 |
creator | Cheong, Kim Ling Pang, Ming Meng Low, Jiun Hor Tshai, Kim Yeow Koay, Seong Chun Wong, Wai Yin Ch'ng, Shiau Ying Buys, Yose Fachmi |
description | Conductive polymer composites (CPC) are gaining increasing popularity due to their unique characteristics, which include light weight and the ability to conduct electricity. In this work, CPC were prepared by blending the polylactic acid (PLA) with a conductive filler, graphene nanoplatelets (GNP), at dosages ranging from 1 to 12 wt % using an internal mixer. The hot press machine was used to compress the CPC into thin sheet, and subsequently characterized for tensile, thermal, and electrical properties. The results showed that the addition of GNP at 7 wt % (percolation threshold) successfully transformed the PLA into an electrically conductive material. The tensile modulus increased with added GNP, but elongation at break and tensile strength exhibited an opposite trend. The incorporation of GNP also enhanced the composite's thermal stability.
The addition of GNP filler into an insulative PLA matrix, above the percolation threshold (7 wt %), has successfully developed a continuous conductive network. The electrons can move freely within the polymer matrix via the conductive pathways; thus, the material is now considered as conductive polymer composite. |
doi_str_mv | 10.1002/ceat.202300592 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119637423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119637423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2022-39bd63614e8517496fe45bb10b978fc9af4beb33ebedc908f15de7083f68f4543</originalsourceid><addsrcrecordid>eNqFUD1PwzAUtBBIlI-V2RIrae04TmK2KioFqYIOYbYc51lNlcbBdkH997gqgpHp6d67e6c7hO4omVJC0pkGFaYpSRkhXKRnaEJ5SpOMpvwcTYhgJCk4zS_RlfdbQgiNYILGpVPjBgbAr2qwY68C9BD8bG37Q6906DSe667FlR3afYSfgI-nHbi42o3WdwH8I65h8F0PD7jegNupHquhxYsedHCdjnDt7AgudOBv0IVRvYfbn3mN3p8WdfWcrN6WL9V8legYIU2YaNqc5TSDktMiE7mBjDcNJY0oSqOFMlkDDWPQQKsFKQ3lLRSkZCYvTcYzdo3uT39HZz_24IPc2r0boqVklIqcFVnKImt6YmlnvXdg5Oi6nXIHSYk8tiqPrcrfVqNAnARfMe7hH7asFvP6T_sNc1d9Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119637423</pqid></control><display><type>article</type><title>Graphene Nanoplatelets/Polylactic Acid Conductive Polymer Composites: Tensile, Thermal and Electrical Properties</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Cheong, Kim Ling ; Pang, Ming Meng ; Low, Jiun Hor ; Tshai, Kim Yeow ; Koay, Seong Chun ; Wong, Wai Yin ; Ch'ng, Shiau Ying ; Buys, Yose Fachmi</creator><creatorcontrib>Cheong, Kim Ling ; Pang, Ming Meng ; Low, Jiun Hor ; Tshai, Kim Yeow ; Koay, Seong Chun ; Wong, Wai Yin ; Ch'ng, Shiau Ying ; Buys, Yose Fachmi</creatorcontrib><description>Conductive polymer composites (CPC) are gaining increasing popularity due to their unique characteristics, which include light weight and the ability to conduct electricity. In this work, CPC were prepared by blending the polylactic acid (PLA) with a conductive filler, graphene nanoplatelets (GNP), at dosages ranging from 1 to 12 wt % using an internal mixer. The hot press machine was used to compress the CPC into thin sheet, and subsequently characterized for tensile, thermal, and electrical properties. The results showed that the addition of GNP at 7 wt % (percolation threshold) successfully transformed the PLA into an electrically conductive material. The tensile modulus increased with added GNP, but elongation at break and tensile strength exhibited an opposite trend. The incorporation of GNP also enhanced the composite's thermal stability.
The addition of GNP filler into an insulative PLA matrix, above the percolation threshold (7 wt %), has successfully developed a continuous conductive network. The electrons can move freely within the polymer matrix via the conductive pathways; thus, the material is now considered as conductive polymer composite.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.202300592</identifier><language>eng</language><publisher>Frankfurt: Wiley Subscription Services, Inc</publisher><subject>Conducting polymers ; Conductive polymer composites ; Electrical properties ; Graphene ; Graphene nanoplatelets ; Modulus of elasticity ; Percolation ; Percolation threshold ; Platelets (materials) ; Polylactic acid ; Polymer matrix composites ; Tensile strength ; Thermal stability</subject><ispartof>Chemical engineering & technology, 2024-11, Vol.47 (11), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2022-39bd63614e8517496fe45bb10b978fc9af4beb33ebedc908f15de7083f68f4543</cites><orcidid>0000-0001-5825-9523 ; 0000-0002-8486-7300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheong, Kim Ling</creatorcontrib><creatorcontrib>Pang, Ming Meng</creatorcontrib><creatorcontrib>Low, Jiun Hor</creatorcontrib><creatorcontrib>Tshai, Kim Yeow</creatorcontrib><creatorcontrib>Koay, Seong Chun</creatorcontrib><creatorcontrib>Wong, Wai Yin</creatorcontrib><creatorcontrib>Ch'ng, Shiau Ying</creatorcontrib><creatorcontrib>Buys, Yose Fachmi</creatorcontrib><title>Graphene Nanoplatelets/Polylactic Acid Conductive Polymer Composites: Tensile, Thermal and Electrical Properties</title><title>Chemical engineering & technology</title><description>Conductive polymer composites (CPC) are gaining increasing popularity due to their unique characteristics, which include light weight and the ability to conduct electricity. In this work, CPC were prepared by blending the polylactic acid (PLA) with a conductive filler, graphene nanoplatelets (GNP), at dosages ranging from 1 to 12 wt % using an internal mixer. The hot press machine was used to compress the CPC into thin sheet, and subsequently characterized for tensile, thermal, and electrical properties. The results showed that the addition of GNP at 7 wt % (percolation threshold) successfully transformed the PLA into an electrically conductive material. The tensile modulus increased with added GNP, but elongation at break and tensile strength exhibited an opposite trend. The incorporation of GNP also enhanced the composite's thermal stability.
The addition of GNP filler into an insulative PLA matrix, above the percolation threshold (7 wt %), has successfully developed a continuous conductive network. The electrons can move freely within the polymer matrix via the conductive pathways; thus, the material is now considered as conductive polymer composite.</description><subject>Conducting polymers</subject><subject>Conductive polymer composites</subject><subject>Electrical properties</subject><subject>Graphene</subject><subject>Graphene nanoplatelets</subject><subject>Modulus of elasticity</subject><subject>Percolation</subject><subject>Percolation threshold</subject><subject>Platelets (materials)</subject><subject>Polylactic acid</subject><subject>Polymer matrix composites</subject><subject>Tensile strength</subject><subject>Thermal stability</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUD1PwzAUtBBIlI-V2RIrae04TmK2KioFqYIOYbYc51lNlcbBdkH997gqgpHp6d67e6c7hO4omVJC0pkGFaYpSRkhXKRnaEJ5SpOMpvwcTYhgJCk4zS_RlfdbQgiNYILGpVPjBgbAr2qwY68C9BD8bG37Q6906DSe667FlR3afYSfgI-nHbi42o3WdwH8I65h8F0PD7jegNupHquhxYsedHCdjnDt7AgudOBv0IVRvYfbn3mN3p8WdfWcrN6WL9V8legYIU2YaNqc5TSDktMiE7mBjDcNJY0oSqOFMlkDDWPQQKsFKQ3lLRSkZCYvTcYzdo3uT39HZz_24IPc2r0boqVklIqcFVnKImt6YmlnvXdg5Oi6nXIHSYk8tiqPrcrfVqNAnARfMe7hH7asFvP6T_sNc1d9Fw</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Cheong, Kim Ling</creator><creator>Pang, Ming Meng</creator><creator>Low, Jiun Hor</creator><creator>Tshai, Kim Yeow</creator><creator>Koay, Seong Chun</creator><creator>Wong, Wai Yin</creator><creator>Ch'ng, Shiau Ying</creator><creator>Buys, Yose Fachmi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5825-9523</orcidid><orcidid>https://orcid.org/0000-0002-8486-7300</orcidid></search><sort><creationdate>202411</creationdate><title>Graphene Nanoplatelets/Polylactic Acid Conductive Polymer Composites: Tensile, Thermal and Electrical Properties</title><author>Cheong, Kim Ling ; Pang, Ming Meng ; Low, Jiun Hor ; Tshai, Kim Yeow ; Koay, Seong Chun ; Wong, Wai Yin ; Ch'ng, Shiau Ying ; Buys, Yose Fachmi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2022-39bd63614e8517496fe45bb10b978fc9af4beb33ebedc908f15de7083f68f4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Conducting polymers</topic><topic>Conductive polymer composites</topic><topic>Electrical properties</topic><topic>Graphene</topic><topic>Graphene nanoplatelets</topic><topic>Modulus of elasticity</topic><topic>Percolation</topic><topic>Percolation threshold</topic><topic>Platelets (materials)</topic><topic>Polylactic acid</topic><topic>Polymer matrix composites</topic><topic>Tensile strength</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheong, Kim Ling</creatorcontrib><creatorcontrib>Pang, Ming Meng</creatorcontrib><creatorcontrib>Low, Jiun Hor</creatorcontrib><creatorcontrib>Tshai, Kim Yeow</creatorcontrib><creatorcontrib>Koay, Seong Chun</creatorcontrib><creatorcontrib>Wong, Wai Yin</creatorcontrib><creatorcontrib>Ch'ng, Shiau Ying</creatorcontrib><creatorcontrib>Buys, Yose Fachmi</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheong, Kim Ling</au><au>Pang, Ming Meng</au><au>Low, Jiun Hor</au><au>Tshai, Kim Yeow</au><au>Koay, Seong Chun</au><au>Wong, Wai Yin</au><au>Ch'ng, Shiau Ying</au><au>Buys, Yose Fachmi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Nanoplatelets/Polylactic Acid Conductive Polymer Composites: Tensile, Thermal and Electrical Properties</atitle><jtitle>Chemical engineering & technology</jtitle><date>2024-11</date><risdate>2024</risdate><volume>47</volume><issue>11</issue><epage>n/a</epage><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>Conductive polymer composites (CPC) are gaining increasing popularity due to their unique characteristics, which include light weight and the ability to conduct electricity. In this work, CPC were prepared by blending the polylactic acid (PLA) with a conductive filler, graphene nanoplatelets (GNP), at dosages ranging from 1 to 12 wt % using an internal mixer. The hot press machine was used to compress the CPC into thin sheet, and subsequently characterized for tensile, thermal, and electrical properties. The results showed that the addition of GNP at 7 wt % (percolation threshold) successfully transformed the PLA into an electrically conductive material. The tensile modulus increased with added GNP, but elongation at break and tensile strength exhibited an opposite trend. The incorporation of GNP also enhanced the composite's thermal stability.
The addition of GNP filler into an insulative PLA matrix, above the percolation threshold (7 wt %), has successfully developed a continuous conductive network. The electrons can move freely within the polymer matrix via the conductive pathways; thus, the material is now considered as conductive polymer composite.</abstract><cop>Frankfurt</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ceat.202300592</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5825-9523</orcidid><orcidid>https://orcid.org/0000-0002-8486-7300</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7516 |
ispartof | Chemical engineering & technology, 2024-11, Vol.47 (11), p.n/a |
issn | 0930-7516 1521-4125 |
language | eng |
recordid | cdi_proquest_journals_3119637423 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Conducting polymers Conductive polymer composites Electrical properties Graphene Graphene nanoplatelets Modulus of elasticity Percolation Percolation threshold Platelets (materials) Polylactic acid Polymer matrix composites Tensile strength Thermal stability |
title | Graphene Nanoplatelets/Polylactic Acid Conductive Polymer Composites: Tensile, Thermal and Electrical Properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Nanoplatelets/Polylactic%20Acid%20Conductive%20Polymer%20Composites:%20Tensile,%20Thermal%20and%20Electrical%20Properties&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Cheong,%20Kim%20Ling&rft.date=2024-11&rft.volume=47&rft.issue=11&rft.epage=n/a&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.202300592&rft_dat=%3Cproquest_cross%3E3119637423%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2022-39bd63614e8517496fe45bb10b978fc9af4beb33ebedc908f15de7083f68f4543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3119637423&rft_id=info:pmid/&rfr_iscdi=true |