Loading…

Graphene Nanoplatelets/Polylactic Acid Conductive Polymer Composites: Tensile, Thermal and Electrical Properties

Conductive polymer composites (CPC) are gaining increasing popularity due to their unique characteristics, which include light weight and the ability to conduct electricity. In this work, CPC were prepared by blending the polylactic acid (PLA) with a conductive filler, graphene nanoplatelets (GNP),...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering & technology 2024-11, Vol.47 (11), p.n/a
Main Authors: Cheong, Kim Ling, Pang, Ming Meng, Low, Jiun Hor, Tshai, Kim Yeow, Koay, Seong Chun, Wong, Wai Yin, Ch'ng, Shiau Ying, Buys, Yose Fachmi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2022-39bd63614e8517496fe45bb10b978fc9af4beb33ebedc908f15de7083f68f4543
container_end_page n/a
container_issue 11
container_start_page
container_title Chemical engineering & technology
container_volume 47
creator Cheong, Kim Ling
Pang, Ming Meng
Low, Jiun Hor
Tshai, Kim Yeow
Koay, Seong Chun
Wong, Wai Yin
Ch'ng, Shiau Ying
Buys, Yose Fachmi
description Conductive polymer composites (CPC) are gaining increasing popularity due to their unique characteristics, which include light weight and the ability to conduct electricity. In this work, CPC were prepared by blending the polylactic acid (PLA) with a conductive filler, graphene nanoplatelets (GNP), at dosages ranging from 1 to 12 wt % using an internal mixer. The hot press machine was used to compress the CPC into thin sheet, and subsequently characterized for tensile, thermal, and electrical properties. The results showed that the addition of GNP at 7 wt % (percolation threshold) successfully transformed the PLA into an electrically conductive material. The tensile modulus increased with added GNP, but elongation at break and tensile strength exhibited an opposite trend. The incorporation of GNP also enhanced the composite's thermal stability. The addition of GNP filler into an insulative PLA matrix, above the percolation threshold (7 wt %), has successfully developed a continuous conductive network. The electrons can move freely within the polymer matrix via the conductive pathways; thus, the material is now considered as conductive polymer composite.
doi_str_mv 10.1002/ceat.202300592
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119637423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119637423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2022-39bd63614e8517496fe45bb10b978fc9af4beb33ebedc908f15de7083f68f4543</originalsourceid><addsrcrecordid>eNqFUD1PwzAUtBBIlI-V2RIrae04TmK2KioFqYIOYbYc51lNlcbBdkH997gqgpHp6d67e6c7hO4omVJC0pkGFaYpSRkhXKRnaEJ5SpOMpvwcTYhgJCk4zS_RlfdbQgiNYILGpVPjBgbAr2qwY68C9BD8bG37Q6906DSe667FlR3afYSfgI-nHbi42o3WdwH8I65h8F0PD7jegNupHquhxYsedHCdjnDt7AgudOBv0IVRvYfbn3mN3p8WdfWcrN6WL9V8legYIU2YaNqc5TSDktMiE7mBjDcNJY0oSqOFMlkDDWPQQKsFKQ3lLRSkZCYvTcYzdo3uT39HZz_24IPc2r0boqVklIqcFVnKImt6YmlnvXdg5Oi6nXIHSYk8tiqPrcrfVqNAnARfMe7hH7asFvP6T_sNc1d9Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119637423</pqid></control><display><type>article</type><title>Graphene Nanoplatelets/Polylactic Acid Conductive Polymer Composites: Tensile, Thermal and Electrical Properties</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cheong, Kim Ling ; Pang, Ming Meng ; Low, Jiun Hor ; Tshai, Kim Yeow ; Koay, Seong Chun ; Wong, Wai Yin ; Ch'ng, Shiau Ying ; Buys, Yose Fachmi</creator><creatorcontrib>Cheong, Kim Ling ; Pang, Ming Meng ; Low, Jiun Hor ; Tshai, Kim Yeow ; Koay, Seong Chun ; Wong, Wai Yin ; Ch'ng, Shiau Ying ; Buys, Yose Fachmi</creatorcontrib><description>Conductive polymer composites (CPC) are gaining increasing popularity due to their unique characteristics, which include light weight and the ability to conduct electricity. In this work, CPC were prepared by blending the polylactic acid (PLA) with a conductive filler, graphene nanoplatelets (GNP), at dosages ranging from 1 to 12 wt % using an internal mixer. The hot press machine was used to compress the CPC into thin sheet, and subsequently characterized for tensile, thermal, and electrical properties. The results showed that the addition of GNP at 7 wt % (percolation threshold) successfully transformed the PLA into an electrically conductive material. The tensile modulus increased with added GNP, but elongation at break and tensile strength exhibited an opposite trend. The incorporation of GNP also enhanced the composite's thermal stability. The addition of GNP filler into an insulative PLA matrix, above the percolation threshold (7 wt %), has successfully developed a continuous conductive network. The electrons can move freely within the polymer matrix via the conductive pathways; thus, the material is now considered as conductive polymer composite.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.202300592</identifier><language>eng</language><publisher>Frankfurt: Wiley Subscription Services, Inc</publisher><subject>Conducting polymers ; Conductive polymer composites ; Electrical properties ; Graphene ; Graphene nanoplatelets ; Modulus of elasticity ; Percolation ; Percolation threshold ; Platelets (materials) ; Polylactic acid ; Polymer matrix composites ; Tensile strength ; Thermal stability</subject><ispartof>Chemical engineering &amp; technology, 2024-11, Vol.47 (11), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2022-39bd63614e8517496fe45bb10b978fc9af4beb33ebedc908f15de7083f68f4543</cites><orcidid>0000-0001-5825-9523 ; 0000-0002-8486-7300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheong, Kim Ling</creatorcontrib><creatorcontrib>Pang, Ming Meng</creatorcontrib><creatorcontrib>Low, Jiun Hor</creatorcontrib><creatorcontrib>Tshai, Kim Yeow</creatorcontrib><creatorcontrib>Koay, Seong Chun</creatorcontrib><creatorcontrib>Wong, Wai Yin</creatorcontrib><creatorcontrib>Ch'ng, Shiau Ying</creatorcontrib><creatorcontrib>Buys, Yose Fachmi</creatorcontrib><title>Graphene Nanoplatelets/Polylactic Acid Conductive Polymer Composites: Tensile, Thermal and Electrical Properties</title><title>Chemical engineering &amp; technology</title><description>Conductive polymer composites (CPC) are gaining increasing popularity due to their unique characteristics, which include light weight and the ability to conduct electricity. In this work, CPC were prepared by blending the polylactic acid (PLA) with a conductive filler, graphene nanoplatelets (GNP), at dosages ranging from 1 to 12 wt % using an internal mixer. The hot press machine was used to compress the CPC into thin sheet, and subsequently characterized for tensile, thermal, and electrical properties. The results showed that the addition of GNP at 7 wt % (percolation threshold) successfully transformed the PLA into an electrically conductive material. The tensile modulus increased with added GNP, but elongation at break and tensile strength exhibited an opposite trend. The incorporation of GNP also enhanced the composite's thermal stability. The addition of GNP filler into an insulative PLA matrix, above the percolation threshold (7 wt %), has successfully developed a continuous conductive network. The electrons can move freely within the polymer matrix via the conductive pathways; thus, the material is now considered as conductive polymer composite.</description><subject>Conducting polymers</subject><subject>Conductive polymer composites</subject><subject>Electrical properties</subject><subject>Graphene</subject><subject>Graphene nanoplatelets</subject><subject>Modulus of elasticity</subject><subject>Percolation</subject><subject>Percolation threshold</subject><subject>Platelets (materials)</subject><subject>Polylactic acid</subject><subject>Polymer matrix composites</subject><subject>Tensile strength</subject><subject>Thermal stability</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUD1PwzAUtBBIlI-V2RIrae04TmK2KioFqYIOYbYc51lNlcbBdkH997gqgpHp6d67e6c7hO4omVJC0pkGFaYpSRkhXKRnaEJ5SpOMpvwcTYhgJCk4zS_RlfdbQgiNYILGpVPjBgbAr2qwY68C9BD8bG37Q6906DSe667FlR3afYSfgI-nHbi42o3WdwH8I65h8F0PD7jegNupHquhxYsedHCdjnDt7AgudOBv0IVRvYfbn3mN3p8WdfWcrN6WL9V8legYIU2YaNqc5TSDktMiE7mBjDcNJY0oSqOFMlkDDWPQQKsFKQ3lLRSkZCYvTcYzdo3uT39HZz_24IPc2r0boqVklIqcFVnKImt6YmlnvXdg5Oi6nXIHSYk8tiqPrcrfVqNAnARfMe7hH7asFvP6T_sNc1d9Fw</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Cheong, Kim Ling</creator><creator>Pang, Ming Meng</creator><creator>Low, Jiun Hor</creator><creator>Tshai, Kim Yeow</creator><creator>Koay, Seong Chun</creator><creator>Wong, Wai Yin</creator><creator>Ch'ng, Shiau Ying</creator><creator>Buys, Yose Fachmi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5825-9523</orcidid><orcidid>https://orcid.org/0000-0002-8486-7300</orcidid></search><sort><creationdate>202411</creationdate><title>Graphene Nanoplatelets/Polylactic Acid Conductive Polymer Composites: Tensile, Thermal and Electrical Properties</title><author>Cheong, Kim Ling ; Pang, Ming Meng ; Low, Jiun Hor ; Tshai, Kim Yeow ; Koay, Seong Chun ; Wong, Wai Yin ; Ch'ng, Shiau Ying ; Buys, Yose Fachmi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2022-39bd63614e8517496fe45bb10b978fc9af4beb33ebedc908f15de7083f68f4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Conducting polymers</topic><topic>Conductive polymer composites</topic><topic>Electrical properties</topic><topic>Graphene</topic><topic>Graphene nanoplatelets</topic><topic>Modulus of elasticity</topic><topic>Percolation</topic><topic>Percolation threshold</topic><topic>Platelets (materials)</topic><topic>Polylactic acid</topic><topic>Polymer matrix composites</topic><topic>Tensile strength</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheong, Kim Ling</creatorcontrib><creatorcontrib>Pang, Ming Meng</creatorcontrib><creatorcontrib>Low, Jiun Hor</creatorcontrib><creatorcontrib>Tshai, Kim Yeow</creatorcontrib><creatorcontrib>Koay, Seong Chun</creatorcontrib><creatorcontrib>Wong, Wai Yin</creatorcontrib><creatorcontrib>Ch'ng, Shiau Ying</creatorcontrib><creatorcontrib>Buys, Yose Fachmi</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheong, Kim Ling</au><au>Pang, Ming Meng</au><au>Low, Jiun Hor</au><au>Tshai, Kim Yeow</au><au>Koay, Seong Chun</au><au>Wong, Wai Yin</au><au>Ch'ng, Shiau Ying</au><au>Buys, Yose Fachmi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Nanoplatelets/Polylactic Acid Conductive Polymer Composites: Tensile, Thermal and Electrical Properties</atitle><jtitle>Chemical engineering &amp; technology</jtitle><date>2024-11</date><risdate>2024</risdate><volume>47</volume><issue>11</issue><epage>n/a</epage><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>Conductive polymer composites (CPC) are gaining increasing popularity due to their unique characteristics, which include light weight and the ability to conduct electricity. In this work, CPC were prepared by blending the polylactic acid (PLA) with a conductive filler, graphene nanoplatelets (GNP), at dosages ranging from 1 to 12 wt % using an internal mixer. The hot press machine was used to compress the CPC into thin sheet, and subsequently characterized for tensile, thermal, and electrical properties. The results showed that the addition of GNP at 7 wt % (percolation threshold) successfully transformed the PLA into an electrically conductive material. The tensile modulus increased with added GNP, but elongation at break and tensile strength exhibited an opposite trend. The incorporation of GNP also enhanced the composite's thermal stability. The addition of GNP filler into an insulative PLA matrix, above the percolation threshold (7 wt %), has successfully developed a continuous conductive network. The electrons can move freely within the polymer matrix via the conductive pathways; thus, the material is now considered as conductive polymer composite.</abstract><cop>Frankfurt</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ceat.202300592</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5825-9523</orcidid><orcidid>https://orcid.org/0000-0002-8486-7300</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2024-11, Vol.47 (11), p.n/a
issn 0930-7516
1521-4125
language eng
recordid cdi_proquest_journals_3119637423
source Wiley-Blackwell Read & Publish Collection
subjects Conducting polymers
Conductive polymer composites
Electrical properties
Graphene
Graphene nanoplatelets
Modulus of elasticity
Percolation
Percolation threshold
Platelets (materials)
Polylactic acid
Polymer matrix composites
Tensile strength
Thermal stability
title Graphene Nanoplatelets/Polylactic Acid Conductive Polymer Composites: Tensile, Thermal and Electrical Properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Nanoplatelets/Polylactic%20Acid%20Conductive%20Polymer%20Composites:%20Tensile,%20Thermal%20and%20Electrical%20Properties&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Cheong,%20Kim%20Ling&rft.date=2024-11&rft.volume=47&rft.issue=11&rft.epage=n/a&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.202300592&rft_dat=%3Cproquest_cross%3E3119637423%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2022-39bd63614e8517496fe45bb10b978fc9af4beb33ebedc908f15de7083f68f4543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3119637423&rft_id=info:pmid/&rfr_iscdi=true