Loading…
A novel Shannon entropy-based backward cloud model and cloud K-means clustering
Shannon entropy is a fundamental metric for evaluating the informational content of events, valued for its robustness, versatility, and ability to capture essential aspects of information theory. Cloud models describe the transformation between qualitative and quantitative knowledge and handle uncer...
Saved in:
Published in: | The Journal of supercomputing 2025, Vol.81 (1), Article 65 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-bd5e5c91747f8808a4179a8557fb801a8c17ddf120f89c5e3d93f66a91ac8da93 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | The Journal of supercomputing |
container_volume | 81 |
creator | Anjali Gupta, Anjana |
description | Shannon entropy is a fundamental metric for evaluating the informational content of events, valued for its robustness, versatility, and ability to capture essential aspects of information theory. Cloud models describe the transformation between qualitative and quantitative knowledge and handle uncertainty by addressing randomness and fuzziness, offering a framework for managing complex situations. Our research introduces Shannon entropy to enhance model accuracy and decision-making in cloud models, proposing the Shannon entropy-based backward cloud transformation algorithm. We illustrate the practical implementation of behavioral matching by surveying key factors individuals consider when choosing companions with similar traits. Subsequently, we develop a cloud K-means clustering algorithm to create cloud clusters that reflect individuals with similar characteristics. Further, cloud similarity measurement analysis identifies individuals within the clusters with the highest similarity. A comparative study demonstrates the new algorithm’s efficacy against traditional methods. This research offers a novel method for improving human decision-making under uncertainty. |
doi_str_mv | 10.1007/s11227-024-06528-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119653115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119653115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-bd5e5c91747f8808a4179a8557fb801a8c17ddf120f89c5e3d93f66a91ac8da93</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicTas7Ti2j1XFn6jUA3C2HNuBltYOdgLq25MSEDcuuxppZlb7IXRO4JIAiKtMCKUCAy0xVJxKzA_QhHDBMJSyPEQTUBSw5CU9Ric5rwGgZIJN0HJWhPjhN8XjqwkhhsKHLsV2h2uTvStqY98-TXKF3cTeFdvoBqsJv_oBb70JeVB97nxahZdTdNSYTfZnP3uKnm-un-Z3eLG8vZ_PFthSgA7XjntuFRGlaKQEaUoilJGci6aWQIy0RDjXEAqNVJZ75hRrqsooYqx0RrEpuhh72xTfe587vY59CsNJzQhRFR8mH1x0dNkUc06-0W1abU3aaQJ6D06P4PQATn-D0_sQG0O53X_k01_1P6kvAypwLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119653115</pqid></control><display><type>article</type><title>A novel Shannon entropy-based backward cloud model and cloud K-means clustering</title><source>Springer Link</source><creator>Anjali ; Gupta, Anjana</creator><creatorcontrib>Anjali ; Gupta, Anjana</creatorcontrib><description>Shannon entropy is a fundamental metric for evaluating the informational content of events, valued for its robustness, versatility, and ability to capture essential aspects of information theory. Cloud models describe the transformation between qualitative and quantitative knowledge and handle uncertainty by addressing randomness and fuzziness, offering a framework for managing complex situations. Our research introduces Shannon entropy to enhance model accuracy and decision-making in cloud models, proposing the Shannon entropy-based backward cloud transformation algorithm. We illustrate the practical implementation of behavioral matching by surveying key factors individuals consider when choosing companions with similar traits. Subsequently, we develop a cloud K-means clustering algorithm to create cloud clusters that reflect individuals with similar characteristics. Further, cloud similarity measurement analysis identifies individuals within the clusters with the highest similarity. A comparative study demonstrates the new algorithm’s efficacy against traditional methods. This research offers a novel method for improving human decision-making under uncertainty.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06528-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Comparative studies ; Compilers ; Computer Science ; Decision making ; Entropy (Information theory) ; Information management ; Information theory ; Interpreters ; Knowledge management ; Processor Architectures ; Programming Languages ; Similarity ; Uncertainty ; Vector quantization</subject><ispartof>The Journal of supercomputing, 2025, Vol.81 (1), Article 65</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-bd5e5c91747f8808a4179a8557fb801a8c17ddf120f89c5e3d93f66a91ac8da93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Anjali</creatorcontrib><creatorcontrib>Gupta, Anjana</creatorcontrib><title>A novel Shannon entropy-based backward cloud model and cloud K-means clustering</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Shannon entropy is a fundamental metric for evaluating the informational content of events, valued for its robustness, versatility, and ability to capture essential aspects of information theory. Cloud models describe the transformation between qualitative and quantitative knowledge and handle uncertainty by addressing randomness and fuzziness, offering a framework for managing complex situations. Our research introduces Shannon entropy to enhance model accuracy and decision-making in cloud models, proposing the Shannon entropy-based backward cloud transformation algorithm. We illustrate the practical implementation of behavioral matching by surveying key factors individuals consider when choosing companions with similar traits. Subsequently, we develop a cloud K-means clustering algorithm to create cloud clusters that reflect individuals with similar characteristics. Further, cloud similarity measurement analysis identifies individuals within the clusters with the highest similarity. A comparative study demonstrates the new algorithm’s efficacy against traditional methods. This research offers a novel method for improving human decision-making under uncertainty.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Comparative studies</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Decision making</subject><subject>Entropy (Information theory)</subject><subject>Information management</subject><subject>Information theory</subject><subject>Interpreters</subject><subject>Knowledge management</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Similarity</subject><subject>Uncertainty</subject><subject>Vector quantization</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwicTas7Ti2j1XFn6jUA3C2HNuBltYOdgLq25MSEDcuuxppZlb7IXRO4JIAiKtMCKUCAy0xVJxKzA_QhHDBMJSyPEQTUBSw5CU9Ric5rwGgZIJN0HJWhPjhN8XjqwkhhsKHLsV2h2uTvStqY98-TXKF3cTeFdvoBqsJv_oBb70JeVB97nxahZdTdNSYTfZnP3uKnm-un-Z3eLG8vZ_PFthSgA7XjntuFRGlaKQEaUoilJGci6aWQIy0RDjXEAqNVJZ75hRrqsooYqx0RrEpuhh72xTfe587vY59CsNJzQhRFR8mH1x0dNkUc06-0W1abU3aaQJ6D06P4PQATn-D0_sQG0O53X_k01_1P6kvAypwLg</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Anjali</creator><creator>Gupta, Anjana</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>A novel Shannon entropy-based backward cloud model and cloud K-means clustering</title><author>Anjali ; Gupta, Anjana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-bd5e5c91747f8808a4179a8557fb801a8c17ddf120f89c5e3d93f66a91ac8da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Comparative studies</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Decision making</topic><topic>Entropy (Information theory)</topic><topic>Information management</topic><topic>Information theory</topic><topic>Interpreters</topic><topic>Knowledge management</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Similarity</topic><topic>Uncertainty</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anjali</creatorcontrib><creatorcontrib>Gupta, Anjana</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anjali</au><au>Gupta, Anjana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel Shannon entropy-based backward cloud model and cloud K-means clustering</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2025</date><risdate>2025</risdate><volume>81</volume><issue>1</issue><artnum>65</artnum><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Shannon entropy is a fundamental metric for evaluating the informational content of events, valued for its robustness, versatility, and ability to capture essential aspects of information theory. Cloud models describe the transformation between qualitative and quantitative knowledge and handle uncertainty by addressing randomness and fuzziness, offering a framework for managing complex situations. Our research introduces Shannon entropy to enhance model accuracy and decision-making in cloud models, proposing the Shannon entropy-based backward cloud transformation algorithm. We illustrate the practical implementation of behavioral matching by surveying key factors individuals consider when choosing companions with similar traits. Subsequently, we develop a cloud K-means clustering algorithm to create cloud clusters that reflect individuals with similar characteristics. Further, cloud similarity measurement analysis identifies individuals within the clusters with the highest similarity. A comparative study demonstrates the new algorithm’s efficacy against traditional methods. This research offers a novel method for improving human decision-making under uncertainty.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06528-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2025, Vol.81 (1), Article 65 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_3119653115 |
source | Springer Link |
subjects | Algorithms Cluster analysis Clustering Comparative studies Compilers Computer Science Decision making Entropy (Information theory) Information management Information theory Interpreters Knowledge management Processor Architectures Programming Languages Similarity Uncertainty Vector quantization |
title | A novel Shannon entropy-based backward cloud model and cloud K-means clustering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20Shannon%20entropy-based%20backward%20cloud%20model%20and%20cloud%20K-means%20clustering&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Anjali&rft.date=2025&rft.volume=81&rft.issue=1&rft.artnum=65&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06528-5&rft_dat=%3Cproquest_cross%3E3119653115%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-bd5e5c91747f8808a4179a8557fb801a8c17ddf120f89c5e3d93f66a91ac8da93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3119653115&rft_id=info:pmid/&rfr_iscdi=true |