Loading…

A novel Shannon entropy-based backward cloud model and cloud K-means clustering

Shannon entropy is a fundamental metric for evaluating the informational content of events, valued for its robustness, versatility, and ability to capture essential aspects of information theory. Cloud models describe the transformation between qualitative and quantitative knowledge and handle uncer...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing 2025, Vol.81 (1), Article 65
Main Authors: Anjali, Gupta, Anjana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-bd5e5c91747f8808a4179a8557fb801a8c17ddf120f89c5e3d93f66a91ac8da93
container_end_page
container_issue 1
container_start_page
container_title The Journal of supercomputing
container_volume 81
creator Anjali
Gupta, Anjana
description Shannon entropy is a fundamental metric for evaluating the informational content of events, valued for its robustness, versatility, and ability to capture essential aspects of information theory. Cloud models describe the transformation between qualitative and quantitative knowledge and handle uncertainty by addressing randomness and fuzziness, offering a framework for managing complex situations. Our research introduces Shannon entropy to enhance model accuracy and decision-making in cloud models, proposing the Shannon entropy-based backward cloud transformation algorithm. We illustrate the practical implementation of behavioral matching by surveying key factors individuals consider when choosing companions with similar traits. Subsequently, we develop a cloud K-means clustering algorithm to create cloud clusters that reflect individuals with similar characteristics. Further, cloud similarity measurement analysis identifies individuals within the clusters with the highest similarity. A comparative study demonstrates the new algorithm’s efficacy against traditional methods. This research offers a novel method for improving human decision-making under uncertainty.
doi_str_mv 10.1007/s11227-024-06528-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119653115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119653115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-bd5e5c91747f8808a4179a8557fb801a8c17ddf120f89c5e3d93f66a91ac8da93</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicTas7Ti2j1XFn6jUA3C2HNuBltYOdgLq25MSEDcuuxppZlb7IXRO4JIAiKtMCKUCAy0xVJxKzA_QhHDBMJSyPEQTUBSw5CU9Ric5rwGgZIJN0HJWhPjhN8XjqwkhhsKHLsV2h2uTvStqY98-TXKF3cTeFdvoBqsJv_oBb70JeVB97nxahZdTdNSYTfZnP3uKnm-un-Z3eLG8vZ_PFthSgA7XjntuFRGlaKQEaUoilJGci6aWQIy0RDjXEAqNVJZ75hRrqsooYqx0RrEpuhh72xTfe587vY59CsNJzQhRFR8mH1x0dNkUc06-0W1abU3aaQJ6D06P4PQATn-D0_sQG0O53X_k01_1P6kvAypwLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119653115</pqid></control><display><type>article</type><title>A novel Shannon entropy-based backward cloud model and cloud K-means clustering</title><source>Springer Link</source><creator>Anjali ; Gupta, Anjana</creator><creatorcontrib>Anjali ; Gupta, Anjana</creatorcontrib><description>Shannon entropy is a fundamental metric for evaluating the informational content of events, valued for its robustness, versatility, and ability to capture essential aspects of information theory. Cloud models describe the transformation between qualitative and quantitative knowledge and handle uncertainty by addressing randomness and fuzziness, offering a framework for managing complex situations. Our research introduces Shannon entropy to enhance model accuracy and decision-making in cloud models, proposing the Shannon entropy-based backward cloud transformation algorithm. We illustrate the practical implementation of behavioral matching by surveying key factors individuals consider when choosing companions with similar traits. Subsequently, we develop a cloud K-means clustering algorithm to create cloud clusters that reflect individuals with similar characteristics. Further, cloud similarity measurement analysis identifies individuals within the clusters with the highest similarity. A comparative study demonstrates the new algorithm’s efficacy against traditional methods. This research offers a novel method for improving human decision-making under uncertainty.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06528-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Comparative studies ; Compilers ; Computer Science ; Decision making ; Entropy (Information theory) ; Information management ; Information theory ; Interpreters ; Knowledge management ; Processor Architectures ; Programming Languages ; Similarity ; Uncertainty ; Vector quantization</subject><ispartof>The Journal of supercomputing, 2025, Vol.81 (1), Article 65</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-bd5e5c91747f8808a4179a8557fb801a8c17ddf120f89c5e3d93f66a91ac8da93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Anjali</creatorcontrib><creatorcontrib>Gupta, Anjana</creatorcontrib><title>A novel Shannon entropy-based backward cloud model and cloud K-means clustering</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Shannon entropy is a fundamental metric for evaluating the informational content of events, valued for its robustness, versatility, and ability to capture essential aspects of information theory. Cloud models describe the transformation between qualitative and quantitative knowledge and handle uncertainty by addressing randomness and fuzziness, offering a framework for managing complex situations. Our research introduces Shannon entropy to enhance model accuracy and decision-making in cloud models, proposing the Shannon entropy-based backward cloud transformation algorithm. We illustrate the practical implementation of behavioral matching by surveying key factors individuals consider when choosing companions with similar traits. Subsequently, we develop a cloud K-means clustering algorithm to create cloud clusters that reflect individuals with similar characteristics. Further, cloud similarity measurement analysis identifies individuals within the clusters with the highest similarity. A comparative study demonstrates the new algorithm’s efficacy against traditional methods. This research offers a novel method for improving human decision-making under uncertainty.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Comparative studies</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Decision making</subject><subject>Entropy (Information theory)</subject><subject>Information management</subject><subject>Information theory</subject><subject>Interpreters</subject><subject>Knowledge management</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Similarity</subject><subject>Uncertainty</subject><subject>Vector quantization</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwicTas7Ti2j1XFn6jUA3C2HNuBltYOdgLq25MSEDcuuxppZlb7IXRO4JIAiKtMCKUCAy0xVJxKzA_QhHDBMJSyPEQTUBSw5CU9Ric5rwGgZIJN0HJWhPjhN8XjqwkhhsKHLsV2h2uTvStqY98-TXKF3cTeFdvoBqsJv_oBb70JeVB97nxahZdTdNSYTfZnP3uKnm-un-Z3eLG8vZ_PFthSgA7XjntuFRGlaKQEaUoilJGci6aWQIy0RDjXEAqNVJZ75hRrqsooYqx0RrEpuhh72xTfe587vY59CsNJzQhRFR8mH1x0dNkUc06-0W1abU3aaQJ6D06P4PQATn-D0_sQG0O53X_k01_1P6kvAypwLg</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Anjali</creator><creator>Gupta, Anjana</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>A novel Shannon entropy-based backward cloud model and cloud K-means clustering</title><author>Anjali ; Gupta, Anjana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-bd5e5c91747f8808a4179a8557fb801a8c17ddf120f89c5e3d93f66a91ac8da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Comparative studies</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Decision making</topic><topic>Entropy (Information theory)</topic><topic>Information management</topic><topic>Information theory</topic><topic>Interpreters</topic><topic>Knowledge management</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Similarity</topic><topic>Uncertainty</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anjali</creatorcontrib><creatorcontrib>Gupta, Anjana</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anjali</au><au>Gupta, Anjana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel Shannon entropy-based backward cloud model and cloud K-means clustering</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2025</date><risdate>2025</risdate><volume>81</volume><issue>1</issue><artnum>65</artnum><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Shannon entropy is a fundamental metric for evaluating the informational content of events, valued for its robustness, versatility, and ability to capture essential aspects of information theory. Cloud models describe the transformation between qualitative and quantitative knowledge and handle uncertainty by addressing randomness and fuzziness, offering a framework for managing complex situations. Our research introduces Shannon entropy to enhance model accuracy and decision-making in cloud models, proposing the Shannon entropy-based backward cloud transformation algorithm. We illustrate the practical implementation of behavioral matching by surveying key factors individuals consider when choosing companions with similar traits. Subsequently, we develop a cloud K-means clustering algorithm to create cloud clusters that reflect individuals with similar characteristics. Further, cloud similarity measurement analysis identifies individuals within the clusters with the highest similarity. A comparative study demonstrates the new algorithm’s efficacy against traditional methods. This research offers a novel method for improving human decision-making under uncertainty.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06528-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2025, Vol.81 (1), Article 65
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_3119653115
source Springer Link
subjects Algorithms
Cluster analysis
Clustering
Comparative studies
Compilers
Computer Science
Decision making
Entropy (Information theory)
Information management
Information theory
Interpreters
Knowledge management
Processor Architectures
Programming Languages
Similarity
Uncertainty
Vector quantization
title A novel Shannon entropy-based backward cloud model and cloud K-means clustering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20Shannon%20entropy-based%20backward%20cloud%20model%20and%20cloud%20K-means%20clustering&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Anjali&rft.date=2025&rft.volume=81&rft.issue=1&rft.artnum=65&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06528-5&rft_dat=%3Cproquest_cross%3E3119653115%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-bd5e5c91747f8808a4179a8557fb801a8c17ddf120f89c5e3d93f66a91ac8da93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3119653115&rft_id=info:pmid/&rfr_iscdi=true